Iggg0r commited on
Commit
c0a2f4c
1 Parent(s): 899b64c

first dummy solution

Browse files
LunarLander_Iggg0r_RL_toy_v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b79a386c5c3516b647317bb548c5907a141fabcbebfb5d16c3ca64b8ef9f76
3
+ size 149219
LunarLander_Iggg0r_RL_toy_v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
LunarLander_Iggg0r_RL_toy_v0/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdeb89a9af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdeb89a9b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdeb89a9c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdeb89a9ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdeb89a9d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdeb89a9dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdeb89a9e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdeb89a9ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdeb89a9f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdeb89af040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdeb89af0d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdeb89af160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fdeb89aa1e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 64,
46
+ "num_timesteps": 2097152,
47
+ "_total_timesteps": 2000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675885806135840000,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAGaV6Lw96iS5Wi2WO3ICmDjCZHg7szrauQAAgD8AAIA/M71EvXv6lrqZApA7TmQEOKjXOrmKSvi2AACAPwAAgD+aJRg8H63yuYrryLuGUZo3KuSyuoYq7bYAAIA/AACAPwASF7yPji26FjtZOvc0WzU/DEg6Tld9uQAAgD8AAIA/mrlyvI8+aLre2nI6sAWEtcnMRjunsYy5AACAPwAAgD/NB8Y8ygM3PtJAAr4FvJ6+DJV7vD1uUb0AAAAAAAAAAABo77x7Xpy6qEmCs5yNFrDqL986tBLMMwAAgD8AAIA/M9uTvOFsmbpqic84Uo0CNXVRFzo6BOIzAACAPwAAgD9mVUm9jzZzukDSejmlTsg0jSCGOkJcjrgAAIA/AACAP5pSmrwUDqW4rKWzupHXajyUGuW7/CXMugAAgD8AAIA/M7NVOsNZCbrbXJC6gKXCNa9wZjofKKg5AACAPwAAgD/mdxi9H+3fuerwtzuy/rA3r/d7OjM+8zQAAIA/AACAPzMGmr3DJVW6yK2WOtoxvzXvAA47CP+suQAAgD8AAIA/zVqHPFzfPrrOASo4XD4LM/Y/FjvuOUm3AACAPwAAgD+aqo689kwRupOE5jrHlx022Yl0OQh9BLoAAIA/AACAP9pOwr1cmxm6q7jmO1n+PLasGq+7hmk8tQAAgD8AAIA/mkqQPOE62rjKSb07DTeXOJyTZzuywlu5AACAPwAAgD/NGpe8H4XDudEnkLr/0T65tO0Nu74EsDkAAIA/AACAPzNr/ztIaYe6YMsbOg0sjzb1gAc7OawwuQAAgD8AAIA/mpwKveH8k7r6HQq60C8rOcHUObuSoAs5AACAPwAAgD8aYTO9e2CRuvI2P7jayIez9PMDO+B7XzcAAIA/AACAP2Ym+rtc01a6vohmOlsAODbzQ4S5E1SGuQAAgD8AAIA/AHw5vAo3T7knPLi71lDwNyoSG7tjT7q2AACAPwAAgD8AmnA8KdBqupBBbDgiRaQzYxMtuoxFibcAAIA/AACAP2bMpDyFK/i5PmHiOgms7TW/XG27p0YEugAAgD8AAIA/Tf8wvY9uBbqmi9i6jxzttQDcqLqOPPc5AACAPwAAgD+aVes8PUphuXZwjTozRJM1+/GBOypKpLkAAIA/AACAP+bYWT1cq2C6Tu1jugtcdrbpa5k5iwiDOQAAgD8AAIA/MyP4vfbskj+6cb++VfHsvu5nar75wUO+AAAAAAAAAAAA2bq97Jm/uW592zoADmI06NGMu9qw/7kAAIA/AACAP1qQg73XNTq7wh4vO3Tlujyp8Gi8gtmePQAAgD8AAIA/mlkJPQp+dj52tJ2+Y+urvif0Nr5AZyW+AAAAAAAAAACaRVm9PRpVuan6GjqF1Jc10zfhulYDObkAAIA/AACAP3PqvL1SIP+5SNDrupym67XkpHe53/AKOgAAgD8AAIA/WpzYvSc3SD9od6K9migev5aOqb0pVEW9AAAAAAAAAAAzgTq8uC6uuWR+SzlVeTG2PrgFO/UTbLgAAIA/AACAP5r9+7vhkIG6bRtrujnSqjwqCbA6kMGTvQAAgD8AAIA/87GEvthcGz9hzL+9zsshv/W1877yvai9AAAAAAAAAACaPJe8KUBzussBfzkzLeczPT0KueAok7gAAIA/AACAP/MKjr0pOFS6v+O4OUTr6bUhW2O7K6fZuAAAgD8AAIA/ALkGveHmhbqCgYM7zoPJOBKFeDvCmpe6AACAPwAAgD9N1I69rvuNumXscjtKBoM2GZgIuwBjjLoAAIA/AACAP/PpoL09aj65jKGROZbomTRIpoK7tmepuAAAgD8AAIA/zQsDvRT0i7pgOuO6f7KRtiz8TjtrHAE6AACAPwAAgD8Absu813MjuWVx5rrOoVW2khm4ucZJBzoAAIA/AACAPwCvhLxOvrw/Qn4KvsV//D29B7y8PXSmvQAAAAAAAAAAzXSAu0jHtro6Udg64rLcNcmSfDkwova5AACAPwAAgD960YS+DG8xP3jIQD42Rd6+cNZ1vmUUUD4AAAAAAAAAAJpfar3OALs/+vKVvqWc5b182gG+wLb7vQAAAAAAAAAAmmk7O1zLXrpgcOe6XA0JtjkdBbpSTQM6AACAPwAAgD9megy87CHCuXO2wDt1vyY2zF4nu5ZxIDUAAIA/AACAP000C732lGK6jnz3OQd37jUzUqs6BWkMuQAAgD8AAIA/MzDBvBRgg7pc7pu6XIqLtYAc5rnycrQ5AACAPwAAgD/NsJC7j/JiutBgYrxk6p62RBX3uv2tDjYAAIA/AACAP80SDb0pYFy6QohSvMOJJr1slJA7XvklPQAAAAAAAAAAM8jFPMN9P7rXm5G7g/fztgeseTuh2ag6AACAPwAAgD+zvUy9rgeAOdt7WrqNhEk7lFQjO/rjXj0AAAAAAAAAAMDOnb17JqS6WtmSOwY/SDi4/gi6kdqpuAAAgD8AAIA/AEkYva4Hnbh7vVE6xJUTNnNEortKUXW5AACAPwAAgD9mEUm99iRRuuottzjLU0O2B0xfO7Odz7cAAIA/AACAP2a2Hz171Iy6iHzjOYwoAjVkN+Y67K0DuQAAgD8AAIA/TWByva6npbg9wA67n+WStmVB1bp3gQo2AACAPwAAgD9N6GS9SM+3ugshG7q334U0BjU6ujoRMTkAAIA/AACAP2aATDwfXfq5EgRRtqCLhbEjVkY7CkB/NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.04857599999999995,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINExtqQNrckCUhpRSlIwBbJRNlwOMAXSUR0ChOGxjz7MxdX2UKGgGaAloD0MIsI14shu9ZUCUhpRSlGgVTegDaBZHQKE4ruMuOCJ1fZQoaAZoCWgPQwipaKz9HTJkQJSGlFKUaBVN6ANoFkdAoTjvbKzRhXV9lChoBmgJaA9DCHB87ZmlrGRAlIaUUpRoFU3oA2gWR0ChOszeGfwrdX2UKGgGaAloD0MI96xrtBwlYkCUhpRSlGgVTegDaBZHQKE7bkS26TZ1fZQoaAZoCWgPQwjtRElIpBRmQJSGlFKUaBVN6ANoFkdAoTxCf4AS4HV9lChoBmgJaA9DCGQ6dHpe3GJAlIaUUpRoFU3oA2gWR0ChPT8cU/OddX2UKGgGaAloD0MIPdNLjGUcc0CUhpRSlGgVS+xoFkdAoT5T1schknV9lChoBmgJaA9DCHSV7q4zhWJAlIaUUpRoFU3oA2gWR0ChQBnxri2ldX2UKGgGaAloD0MILeqT3GGSXkCUhpRSlGgVTegDaBZHQKFAL3yqdYp1fZQoaAZoCWgPQwixicxc4IthQJSGlFKUaBVN6ANoFkdAoUHvoPkJbHV9lChoBmgJaA9DCNRIS+Xtt2ZAlIaUUpRoFU3oA2gWR0ChQmHf/FR6dX2UKGgGaAloD0MIuOUjKekBZUCUhpRSlGgVTegDaBZHQKFC1Hd43WF1fZQoaAZoCWgPQwjUX6+wYAJgQJSGlFKUaBVN6ANoFkdAoUXPiPyTZHV9lChoBmgJaA9DCHhgAOHDPGVAlIaUUpRoFU3oA2gWR0ChR5YUeuFIdX2UKGgGaAloD0MIRML3/oYHZkCUhpRSlGgVTegDaBZHQKFH8SeRPoF1fZQoaAZoCWgPQwh002achilkQJSGlFKUaBVN6ANoFkdAoUgzdFfAsXV9lChoBmgJaA9DCOWXwRgRdmdAlIaUUpRoFU3oA2gWR0ChSU+x4Y78dX2UKGgGaAloD0MI09heC/oRZECUhpRSlGgVTegDaBZHQKFJlXYDklx1fZQoaAZoCWgPQwi1cFmFTednQJSGlFKUaBVN6ANoFkdAoUydxjriVHV9lChoBmgJaA9DCBu8r8qFjmJAlIaUUpRoFU3oA2gWR0ChTVnBUJfIdX2UKGgGaAloD0MISYYcW8+XYkCUhpRSlGgVTegDaBZHQKFQE/47A+J1fZQoaAZoCWgPQwg4E9OFWF5iQJSGlFKUaBVN6ANoFkdAoVCwuoP07XV9lChoBmgJaA9DCP/sR4rIBmVAlIaUUpRoFU3oA2gWR0ChUtu+ZgG9dX2UKGgGaAloD0MIZk8Cm/MsZ0CUhpRSlGgVTegDaBZHQKFUD3fyf+V1fZQoaAZoCWgPQwgL7gc8MEFoQJSGlFKUaBVN6ANoFkdAoVZgBLf1pXV9lChoBmgJaA9DCLx4P24/VWBAlIaUUpRoFU3oA2gWR0ChVzi2MKkVdX2UKGgGaAloD0MIfQOTG8VfZECUhpRSlGgVTegDaBZHQKFY5GSZBs11fZQoaAZoCWgPQwhlwi/1c3ZjQJSGlFKUaBVN6ANoFkdAoVl147ihnXV9lChoBmgJaA9DCOhrlstGbWNAlIaUUpRoFU3oA2gWR0ChXA66z3RHdX2UKGgGaAloD0MIGoaPiKnKZECUhpRSlGgVTegDaBZHQKFctLV4HHF1fZQoaAZoCWgPQwg5Q3HHG0dgQJSGlFKUaBVN6ANoFkdAoV1w6ySmqHV9lChoBmgJaA9DCHIW9rRDYGRAlIaUUpRoFU3oA2gWR0ChXgW7nPmgdX2UKGgGaAloD0MIf6SIDCtHYECUhpRSlGgVTegDaBZHQKFe7HpbD/F1fZQoaAZoCWgPQwhqaW6FMPNmQJSGlFKUaBVN6ANoFkdAoV8CIpH7QHV9lChoBmgJaA9DCM7+QLntIWhAlIaUUpRoFU3oA2gWR0ChXylWXC0odX2UKGgGaAloD0MIbVUS2QcrZECUhpRSlGgVTegDaBZHQKFfhollbvB1fZQoaAZoCWgPQwj+CwQBsmBgQJSGlFKUaBVN6ANoFkdAoV/6f8MuvnV9lChoBmgJaA9DCHIVi98UPGVAlIaUUpRoFU3oA2gWR0ChYPzU7Sy/dX2UKGgGaAloD0MIYVW9/M6lbkCUhpRSlGgVTeoCaBZHQKFhnM5fdAR1fZQoaAZoCWgPQwh5AfbRKbVgQJSGlFKUaBVN6ANoFkdAoWIb9ETg23V9lChoBmgJaA9DCHmsGRlkLWNAlIaUUpRoFU3oA2gWR0ChYlM1baAXdX2UKGgGaAloD0MIvf+PEyZFYkCUhpRSlGgVTegDaBZHQKFieO/+Kj11fZQoaAZoCWgPQwjUEFX4Mz1kQJSGlFKUaBVN6ANoFkdAoWQLfek563V9lChoBmgJaA9DCPUsCOV9/mBAlIaUUpRoFU3oA2gWR0ChZHE9dNWVdX2UKGgGaAloD0MI7nw/Nd7RYkCUhpRSlGgVTegDaBZHQKFl5G4I8hd1fZQoaAZoCWgPQwi86gHzEMhgQJSGlFKUaBVN6ANoFkdAoWbYeaKDTXV9lChoBmgJaA9DCF9AL9y5/2JAlIaUUpRoFU3oA2gWR0ChZyIxgy/LdX2UKGgGaAloD0MIelImNbREY0CUhpRSlGgVTegDaBZHQKFoa+hXbM51fZQoaAZoCWgPQwhntcAeE25fQJSGlFKUaBVN6ANoFkdAoWmCBshxHXV9lChoBmgJaA9DCNl6hnBMUGNAlIaUUpRoFU3oA2gWR0ChbHgwXZXddX2UKGgGaAloD0MIP49RnvnOcUCUhpRSlGgVTRUBaBZHQKFux8Yyfth1fZQoaAZoCWgPQwg0R1Z+GfdlQJSGlFKUaBVN6ANoFkdAoW7ZKFqSHXV9lChoBmgJaA9DCAddwqE3VGVAlIaUUpRoFU3oA2gWR0Chbv5VfeDWdX2UKGgGaAloD0MI9RQ5RFzYZkCUhpRSlGgVTegDaBZHQKFvMSElE7Z1fZQoaAZoCWgPQwhaKm9HuPFnQJSGlFKUaBVN6ANoFkdAoXBtt8/lhnV9lChoBmgJaA9DCJoF2h1SIGVAlIaUUpRoFU3oA2gWR0ChcnzDO1OTdX2UKGgGaAloD0MI0XR2MjgSYkCUhpRSlGgVTegDaBZHQKFz+R5kbxV1fZQoaAZoCWgPQwgMlBRYAH1gQJSGlFKUaBVN6ANoFkdAoXU3aYeDF3V9lChoBmgJaA9DCElHOZjNb2dAlIaUUpRoFU3oA2gWR0Chd73d9Dx9dX2UKGgGaAloD0MIJvxSP28EaECUhpRSlGgVTegDaBZHQKF30weNkvt1fZQoaAZoCWgPQwiOXDelvKJhQJSGlFKUaBVN6ANoFkdAoXf3PZ7HAHV9lChoBmgJaA9DCM07TtERI2VAlIaUUpRoFU3oA2gWR0CheUDhcZ+AdX2UKGgGaAloD0MI5SoWvynnaUCUhpRSlGgVTegDaBZHQKF52iAUcn51fZQoaAZoCWgPQwhXe9gLhfNmQJSGlFKUaBVN6ANoFkdAoXoyqyWzGHV9lChoBmgJaA9DCD8Cf/j550jAlIaUUpRoFU2nAWgWR0Che4N78ejmdX2UKGgGaAloD0MIGxNiLikFYkCUhpRSlGgVTegDaBZHQKF8GdUbT+h1fZQoaAZoCWgPQwhe2JqtvDZjQJSGlFKUaBVN6ANoFkdAoXxc0SAYpHV9lChoBmgJaA9DCM1WXvK/LGFAlIaUUpRoFU3oA2gWR0ChfKAzYVZcdX2UKGgGaAloD0MI1PIDV3nRZECUhpRSlGgVTegDaBZHQKF+V238XN11fZQoaAZoCWgPQwh7Z7RVyb9kQJSGlFKUaBVN6ANoFkdAoX8ClrM1THV9lChoBmgJaA9DCNkiaTd6hWdAlIaUUpRoFU3oA2gWR0Chf9mZmZmadX2UKGgGaAloD0MIcO8a9KWnZkCUhpRSlGgVTegDaBZHQKGA26GxlhB1fZQoaAZoCWgPQwiNz2T/PPplQJSGlFKUaBVN6ANoFkdAoYHx6KLsKXV9lChoBmgJaA9DCEz/klSmwWVAlIaUUpRoFU3oA2gWR0Chg62saKk3dX2UKGgGaAloD0MIZVBtcCKLXkCUhpRSlGgVTegDaBZHQKGDwjtXxON1fZQoaAZoCWgPQwgQAvIl1IJkQJSGlFKUaBVN6ANoFkdAoYVp3kgfVHV9lChoBmgJaA9DCGwGuCDb7WVAlIaUUpRoFU3oA2gWR0Chhdx3eN1hdX2UKGgGaAloD0MI/1nz469mY0CUhpRSlGgVTegDaBZHQKGGURT0g8t1fZQoaAZoCWgPQwjcDg2LUYhQQJSGlFKUaBVLkWgWR0ChiEyJKraNdX2UKGgGaAloD0MIpABRMGMTYECUhpRSlGgVTegDaBZHQKGJVVU+9rZ1fZQoaAZoCWgPQwgLmpZYGRdkQJSGlFKUaBVN6ANoFkdAoYsfb9If83V9lChoBmgJaA9DCL+ZmC5EV2VAlIaUUpRoFU3oA2gWR0Chi3cf/3nIdX2UKGgGaAloD0MIbjSAt8DHZkCUhpRSlGgVTegDaBZHQKGLtkYoAn51fZQoaAZoCWgPQwgzNJ4IYj9hQJSGlFKUaBVN6ANoFkdAoYy6J9AoonV9lChoBmgJaA9DCBMteTyt5WFAlIaUUpRoFU3oA2gWR0ChjPm0NSZSdX2UKGgGaAloD0MIzlFHx9VqYkCUhpRSlGgVTegDaBZHQKGP1KPGQ0Z1fZQoaAZoCWgPQwjAIypUt+5lQJSGlFKUaBVN6ANoFkdAoZCMw5/9YXV9lChoBmgJaA9DCAN64c4F9mhAlIaUUpRoFU3oA2gWR0Chkyky+HrRdX2UKGgGaAloD0MIJ4kl5e6dZkCUhpRSlGgVTegDaBZHQKGTvl/6O5t1fZQoaAZoCWgPQwiDv1/MloFfQJSGlFKUaBVN6ANoFkdAoZXPT9bX6XV9lChoBmgJaA9DCB5rRga5OV5AlIaUUpRoFU3oA2gWR0Chlu8Udq+KdX2UKGgGaAloD0MIw5s1eN8WZUCUhpRSlGgVTegDaBZHQKGZGMJhOQB1fZQoaAZoCWgPQwhw0jQomjdjQJSGlFKUaBVN6ANoFkdAoZnlruYx+XV9lChoBmgJaA9DCFBxHHg1xmdAlIaUUpRoFU3oA2gWR0Chm4R02cawdX2UKGgGaAloD0MIdlJflnauZ0CUhpRSlGgVTegDaBZHQKGcFXKbKA91fZQoaAZoCWgPQwi4dqIkJKRwQJSGlFKUaBVNxAJoFkdAoZ2iesgdO3V9lChoBmgJaA9DCMCUgQNaQmZAlIaUUpRoFU3oA2gWR0ChnzTO5avBdX2UKGgGaAloD0MIcHoX70eQY0CUhpRSlGgVTegDaBZHQKGf5oL5RCR1fZQoaAZoCWgPQwjQCgxZXfhkQJSGlFKUaBVN6ANoFkdAoaBuzByjpXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 320,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 20,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
LunarLander_Iggg0r_RL_toy_v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ec9ec1dd06b472c75625055ed507817ee867257435234f10d2a781ea6576249
3
+ size 87545
LunarLander_Iggg0r_RL_toy_v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b33a0093096fb0695b125a4a0d714c6ae3574b3858f82408be79dde4cda1e549
3
+ size 43265
LunarLander_Iggg0r_RL_toy_v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander_Iggg0r_RL_toy_v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 260.98 +/- 25.02
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 281.37 +/- 14.10
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fde8d8d8af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fde8d8d8b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fde8d8d8c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fde8d8d8ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fde8d8d8d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fde8d8d8dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fde8d8d8e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fde8d8d8ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fde8d8d8f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fde8d8db040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fde8d8db0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fde8d8db160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fde8d8d4780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675873217006203000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7lD3nEAk+3oK/PLCnvb6xUZM9hiONvQAAAAAAAAAArg8dvyeASb7iCIG7jMX4ucbeTD6btp06AACAPwAAgD8zTFM97AmGuXbCybYRv02xwqRJustG7DUAAIA/AACAP4ABHz5E2YY/s87OPhKQJr93yoo+nXlHPgAAAAAAAAAAM16BvXpXsj9K7QC/9VhYvvdgSTwvHpq9AAAAAAAAAABmPuu7SIOpuoNiXjYiStcuxtWxuqzYgrUAAIA/AACAP2b1vzzsUOG77p2ePKX2vzzy/7s8rtgCOgAAgD8AAIA/M9mvPNfzZrkIXHc5EqGwNF2hqztvJpG4AACAPwAAgD8AR9O89ugXugmgkDujQ4A4cnptO4d8wrgAAIA/AACAP5p4uT2dIKw/7rYlPxR6tb47CS89whGTPgAAAAAAAAAAZhxSPD31pz/s3QQ+x2cMv5BFSTxWxW09AAAAAAAAAADz8N494dCVuiJfl7jr54azMz9TukZ5rzcAAAAAAACAP82+Z71qdAs+MeC4PrsQnL4Ylno+GH3CPQAAAAAAAAAAgLSRPbin+LveHB28XyCCPDR+RT2ObVu9AACAPwAAgD/aIry98buWPvOswT565bW+TOMoPc2FhT0AAAAAAAAAAGYmTDz2xLo/U/vLPaWRmzvTR0k8llsitwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoFIlyp5RcECUhpRSlIwBbJRL6IwBdJRHQI5hkpw0fo11fZQoaAZoCWgPQwgQO1Po/J5yQJSGlFKUaBVL7GgWR0COYf4Fiay9dX2UKGgGaAloD0MIic4yixBdcUCUhpRSlGgVTQMBaBZHQI5iN7laKUF1fZQoaAZoCWgPQwj4wfnUsWpAQJSGlFKUaBVLrmgWR0COYqD4gzP9dX2UKGgGaAloD0MII72o3S8HbUCUhpRSlGgVS99oFkdAjmLA6+36RHV9lChoBmgJaA9DCPD5YYRwWnBAlIaUUpRoFUvvaBZHQI5jhMWXTmZ1fZQoaAZoCWgPQwglWYejK8pvQJSGlFKUaBVL7GgWR0COY/aL4vexdX2UKGgGaAloD0MI8+fbgiW2bkCUhpRSlGgVS9toFkdAjmQhAnlXBHV9lChoBmgJaA9DCGOcvwlFgnFAlIaUUpRoFUv5aBZHQI5lQ2wV0tB1fZQoaAZoCWgPQwikpfJ2RBpzQJSGlFKUaBVLy2gWR0COZW7zTWoWdX2UKGgGaAloD0MIILQevgxKcUCUhpRSlGgVTQYBaBZHQI5lqvicXnB1fZQoaAZoCWgPQwjBOSNKe29IQJSGlFKUaBVLpWgWR0COZn2VVxS6dX2UKGgGaAloD0MI+1sC8I8pcECUhpRSlGgVS+5oFkdAjmaTT4L1EnV9lChoBmgJaA9DCB6jPPOyx3NAlIaUUpRoFUvWaBZHQI5mtXJYDDF1fZQoaAZoCWgPQwgcz2dAffZyQJSGlFKUaBVL52gWR0COZ0AWBSUDdX2UKGgGaAloD0MI5Uf8irVzcECUhpRSlGgVS+1oFkdAjmfncL0BfnV9lChoBmgJaA9DCNFZZhGKW3JAlIaUUpRoFUvTaBZHQI5oPZdv8651fZQoaAZoCWgPQwgjhh3GJJdtQJSGlFKUaBVLyWgWR0COaLE9dNWVdX2UKGgGaAloD0MIhZfg1EcpcECUhpRSlGgVS/NoFkdAjmloESuhbnV9lChoBmgJaA9DCDRMbanDBXNAlIaUUpRoFUvfaBZHQI5qqqjrRjV1fZQoaAZoCWgPQwj7yRgfplNyQJSGlFKUaBVNIwFoFkdAjmtwDV6NVHV9lChoBmgJaA9DCAdCsoCJpHNAlIaUUpRoFUvzaBZHQI5rjS7Xg+B1fZQoaAZoCWgPQwibOo+K/y1KQJSGlFKUaBVLpWgWR0COa59ETg2qdX2UKGgGaAloD0MIWkV/aKYgckCUhpRSlGgVTQ4BaBZHQI5rvhCMPz51fZQoaAZoCWgPQwhgdHlzOFZuQJSGlFKUaBVL3GgWR0COa/qdH2AYdX2UKGgGaAloD0MI5Q0w8x0yTECUhpRSlGgVS7doFkdAjmxDFQ2uPnV9lChoBmgJaA9DCC6sG+8Oa3JAlIaUUpRoFUv2aBZHQI5tFtqHoHN1fZQoaAZoCWgPQwhvL2mM1k1yQJSGlFKUaBVL82gWR0CObdZf2K2sdX2UKGgGaAloD0MIpYKKqh+XcECUhpRSlGgVS+loFkdAjm5cAq/dqXV9lChoBmgJaA9DCHr83qZ/+HJAlIaUUpRoFUvgaBZHQI5vLej2zv91fZQoaAZoCWgPQwg7GLFPAHFuQJSGlFKUaBVNCQFoFkdAjnBAYxcmjXV9lChoBmgJaA9DCCCySBPvpk1AlIaUUpRoFUuTaBZHQI5waPIXCTF1fZQoaAZoCWgPQwjRrdf0IKNtQJSGlFKUaBVNCQFoFkdAjnE64Ds+mnV9lChoBmgJaA9DCPuxSX5EaHJAlIaUUpRoFU16AWgWR0COcU4XoC+2dX2UKGgGaAloD0MIAI3SpX8BNkCUhpRSlGgVS3RoFkdAjnHWmYSg5HV9lChoBmgJaA9DCD0MrU5Omm5AlIaUUpRoFU0HAWgWR0COcffXPJJYdX2UKGgGaAloD0MIHXbfMTzockCUhpRSlGgVS+RoFkdAjnIevIOpbXV9lChoBmgJaA9DCN2YnrBEF3BAlIaUUpRoFUu8aBZHQI5ycyBTXJ51fZQoaAZoCWgPQwjeBN80/U9xQJSGlFKUaBVL7WgWR0COc0zQeFL4dX2UKGgGaAloD0MIN/5EZYMucUCUhpRSlGgVTQkBaBZHQI50EtwrDqJ1fZQoaAZoCWgPQwinzw647odwQJSGlFKUaBVNkwNoFkdAjnRmipNsWXV9lChoBmgJaA9DCF+zXDb6+nJAlIaUUpRoFUv1aBZHQI52e0Z3s5Z1fZQoaAZoCWgPQwi1FmahndBuQJSGlFKUaBVL8GgWR0COdzJcPe54dX2UKGgGaAloD0MI9dbAVomgcECUhpRSlGgVS8VoFkdAjne588cMmXV9lChoBmgJaA9DCO5Cc53Gy3BAlIaUUpRoFUvOaBZHQI54KJj2Bat1fZQoaAZoCWgPQwiskPKTauxtQJSGlFKUaBVNDgFoFkdAjnm1FH8TBnV9lChoBmgJaA9DCHvYCwWs/XFAlIaUUpRoFUvgaBZHQI550IgNgBt1fZQoaAZoCWgPQwhYjLrWHrRxQJSGlFKUaBVNNgFoFkdAjnsexfOUuHV9lChoBmgJaA9DCGKiQQpernBAlIaUUpRoFUv4aBZHQI57NKmKqGV1fZQoaAZoCWgPQwg1XU90nVByQJSGlFKUaBVNEAFoFkdAjnuFY+0PYnV9lChoBmgJaA9DCO7O2m2XanFAlIaUUpRoFUvVaBZHQI57teQdS2p1fZQoaAZoCWgPQwjlmZfDbuFyQJSGlFKUaBVNHwFoFkdAjnvrt/nW8XV9lChoBmgJaA9DCChFK/cCpW5AlIaUUpRoFUv+aBZHQI58UiKR+0B1fZQoaAZoCWgPQwh+i06WmitzQJSGlFKUaBVL7GgWR0COfMWu5jH5dX2UKGgGaAloD0MIjSjtDX6DcUCUhpRSlGgVTQwCaBZHQI5/NZFG5MF1fZQoaAZoCWgPQwh56Ltb2YNyQJSGlFKUaBVL/2gWR0COgJ9LHuJDdX2UKGgGaAloD0MIbJc2HJa2bUCUhpRSlGgVTSMBaBZHQI6BT4xk/bF1fZQoaAZoCWgPQwjAJQD/FNtxQJSGlFKUaBVL/WgWR0COgZg6U7jldX2UKGgGaAloD0MIPNwODYtucECUhpRSlGgVS8poFkdAjoKL/CIk7nV9lChoBmgJaA9DCEMc6+I2929AlIaUUpRoFUv5aBZHQI6DG8wpON51fZQoaAZoCWgPQwh8RbdeExlzQJSGlFKUaBVNAQFoFkdAjoNRx1gYxnV9lChoBmgJaA9DCB1VTRB1yXJAlIaUUpRoFUvbaBZHQI6DT48EFGJ1fZQoaAZoCWgPQwjPwMjLmrlxQJSGlFKUaBVL1mgWR0COg5ylvZRLdX2UKGgGaAloD0MIGt1B7ExUbUCUhpRSlGgVS/loFkdAjoSdCVrylXV9lChoBmgJaA9DCLzplh1i7XFAlIaUUpRoFUvvaBZHQI6Fl0cOskp1fZQoaAZoCWgPQwiZEkn0stJxQJSGlFKUaBVNFwFoFkdAjoYP8Q7LdXV9lChoBmgJaA9DCG6hKxGoOW1AlIaUUpRoFU0uAWgWR0COh1n9vS+hdX2UKGgGaAloD0MIibK3lPNdc0CUhpRSlGgVS8NoFkdAjohw2/BWP3V9lChoBmgJaA9DCOAT61S5KXJAlIaUUpRoFUv3aBZHQI6IbneSB9V1fZQoaAZoCWgPQwgxJCcTN6RwQJSGlFKUaBVL0WgWR0COiTLdvbXZdX2UKGgGaAloD0MILq2GxL3kb0CUhpRSlGgVS9xoFkdAjotnPE87p3V9lChoBmgJaA9DCAU25+BZtXFAlIaUUpRoFUvwaBZHQI6MUYO2AoZ1fZQoaAZoCWgPQwhvumWHeAlxQJSGlFKUaBVLxmgWR0COjhq9oN/fdX2UKGgGaAloD0MIsKnzqPiVVMCUhpRSlGgVS45oFkdAjo6O1fE4vXV9lChoBmgJaA9DCOYHrvLExHBAlIaUUpRoFU0XAWgWR0COjpomG/N8dX2UKGgGaAloD0MIjWMkewTlcECUhpRSlGgVTU8BaBZHQI6P7SPU8V51fZQoaAZoCWgPQwgf9kIB23JRQJSGlFKUaBVN6ANoFkdAjpAgmzByj3V9lChoBmgJaA9DCFH4bB0cOlVAlIaUUpRoFU3oA2gWR0COkLQmeDnOdX2UKGgGaAloD0MIIy4AjZK4cUCUhpRSlGgVS8poFkdAjpEnp8neBXV9lChoBmgJaA9DCJKyRdJuKHBAlIaUUpRoFU1zAWgWR0COkd8JD3M7dX2UKGgGaAloD0MIXJAty5eBcUCUhpRSlGgVS91oFkdAjpKofSx7iXV9lChoBmgJaA9DCCGQSxy5xHFAlIaUUpRoFU1SAWgWR0COk1OjZcs2dX2UKGgGaAloD0MI+7FJfgSIc0CUhpRSlGgVTYEBaBZHQI6T/336AOJ1fZQoaAZoCWgPQwi2EyUh0cxxQJSGlFKUaBVLymgWR0COlKvsZ5zHdX2UKGgGaAloD0MIPzifOtY1ckCUhpRSlGgVS+NoFkdAjpTVkDp1R3V9lChoBmgJaA9DCDdtxmmI9nJAlIaUUpRoFU1dAWgWR0COlW7GvOhTdX2UKGgGaAloD0MInKiluRUeOUCUhpRSlGgVS4VoFkdAjpXoDoyKvXV9lChoBmgJaA9DCOEoeXXOD3RAlIaUUpRoFUvWaBZHQI6WlF6Rhc91fZQoaAZoCWgPQwho6J/gYthyQJSGlFKUaBVL8WgWR0COlyh3aBZqdX2UKGgGaAloD0MIGD4ipkRsRECUhpRSlGgVS6doFkdAjphWXb/OuHV9lChoBmgJaA9DCB+/t+lPyHJAlIaUUpRoFUvzaBZHQI6YqNZNfw91fZQoaAZoCWgPQwhOJ9nqMlNwQJSGlFKUaBVNFwFoFkdAjpjJxWDHwXV9lChoBmgJaA9DCA39E1ysSGlAlIaUUpRoFU2CA2gWR0COmZWfbsWwdX2UKGgGaAloD0MIJZUp5iAgckCUhpRSlGgVS/BoFkdAjpoUcn3L3nV9lChoBmgJaA9DCHYXKCmwaXJAlIaUUpRoFU0kAWgWR0COmiGEf1YhdX2UKGgGaAloD0MIbmk1JK7GcUCUhpRSlGgVTXYBaBZHQI6dpX8wYch1fZQoaAZoCWgPQwiwWS4bHThvQJSGlFKUaBVLz2gWR0COnmG0u14PdX2UKGgGaAloD0MI+DO8WQOEbkCUhpRSlGgVS/ZoFkdAjp5hLf1pTXV9lChoBmgJaA9DCJ6ymq5nu3FAlIaUUpRoFU0HAWgWR0COnnDCP6sRdX2UKGgGaAloD0MI3ZVdMPjZckCUhpRSlGgVTUUBaBZHQI6eiHj6vaF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdeb89a9af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdeb89a9b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdeb89a9c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdeb89a9ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fdeb89a9d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fdeb89a9dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdeb89a9e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdeb89a9ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdeb89a9f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdeb89af040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdeb89af0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdeb89af160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdeb89aa1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2097152, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675885806135840000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAGaV6Lw96iS5Wi2WO3ICmDjCZHg7szrauQAAgD8AAIA/M71EvXv6lrqZApA7TmQEOKjXOrmKSvi2AACAPwAAgD+aJRg8H63yuYrryLuGUZo3KuSyuoYq7bYAAIA/AACAPwASF7yPji26FjtZOvc0WzU/DEg6Tld9uQAAgD8AAIA/mrlyvI8+aLre2nI6sAWEtcnMRjunsYy5AACAPwAAgD/NB8Y8ygM3PtJAAr4FvJ6+DJV7vD1uUb0AAAAAAAAAAABo77x7Xpy6qEmCs5yNFrDqL986tBLMMwAAgD8AAIA/M9uTvOFsmbpqic84Uo0CNXVRFzo6BOIzAACAPwAAgD9mVUm9jzZzukDSejmlTsg0jSCGOkJcjrgAAIA/AACAP5pSmrwUDqW4rKWzupHXajyUGuW7/CXMugAAgD8AAIA/M7NVOsNZCbrbXJC6gKXCNa9wZjofKKg5AACAPwAAgD/mdxi9H+3fuerwtzuy/rA3r/d7OjM+8zQAAIA/AACAPzMGmr3DJVW6yK2WOtoxvzXvAA47CP+suQAAgD8AAIA/zVqHPFzfPrrOASo4XD4LM/Y/FjvuOUm3AACAPwAAgD+aqo689kwRupOE5jrHlx022Yl0OQh9BLoAAIA/AACAP9pOwr1cmxm6q7jmO1n+PLasGq+7hmk8tQAAgD8AAIA/mkqQPOE62rjKSb07DTeXOJyTZzuywlu5AACAPwAAgD/NGpe8H4XDudEnkLr/0T65tO0Nu74EsDkAAIA/AACAPzNr/ztIaYe6YMsbOg0sjzb1gAc7OawwuQAAgD8AAIA/mpwKveH8k7r6HQq60C8rOcHUObuSoAs5AACAPwAAgD8aYTO9e2CRuvI2P7jayIez9PMDO+B7XzcAAIA/AACAP2Ym+rtc01a6vohmOlsAODbzQ4S5E1SGuQAAgD8AAIA/AHw5vAo3T7knPLi71lDwNyoSG7tjT7q2AACAPwAAgD8AmnA8KdBqupBBbDgiRaQzYxMtuoxFibcAAIA/AACAP2bMpDyFK/i5PmHiOgms7TW/XG27p0YEugAAgD8AAIA/Tf8wvY9uBbqmi9i6jxzttQDcqLqOPPc5AACAPwAAgD+aVes8PUphuXZwjTozRJM1+/GBOypKpLkAAIA/AACAP+bYWT1cq2C6Tu1jugtcdrbpa5k5iwiDOQAAgD8AAIA/MyP4vfbskj+6cb++VfHsvu5nar75wUO+AAAAAAAAAAAA2bq97Jm/uW592zoADmI06NGMu9qw/7kAAIA/AACAP1qQg73XNTq7wh4vO3Tlujyp8Gi8gtmePQAAgD8AAIA/mlkJPQp+dj52tJ2+Y+urvif0Nr5AZyW+AAAAAAAAAACaRVm9PRpVuan6GjqF1Jc10zfhulYDObkAAIA/AACAP3PqvL1SIP+5SNDrupym67XkpHe53/AKOgAAgD8AAIA/WpzYvSc3SD9od6K9migev5aOqb0pVEW9AAAAAAAAAAAzgTq8uC6uuWR+SzlVeTG2PrgFO/UTbLgAAIA/AACAP5r9+7vhkIG6bRtrujnSqjwqCbA6kMGTvQAAgD8AAIA/87GEvthcGz9hzL+9zsshv/W1877yvai9AAAAAAAAAACaPJe8KUBzussBfzkzLeczPT0KueAok7gAAIA/AACAP/MKjr0pOFS6v+O4OUTr6bUhW2O7K6fZuAAAgD8AAIA/ALkGveHmhbqCgYM7zoPJOBKFeDvCmpe6AACAPwAAgD9N1I69rvuNumXscjtKBoM2GZgIuwBjjLoAAIA/AACAP/PpoL09aj65jKGROZbomTRIpoK7tmepuAAAgD8AAIA/zQsDvRT0i7pgOuO6f7KRtiz8TjtrHAE6AACAPwAAgD8Absu813MjuWVx5rrOoVW2khm4ucZJBzoAAIA/AACAPwCvhLxOvrw/Qn4KvsV//D29B7y8PXSmvQAAAAAAAAAAzXSAu0jHtro6Udg64rLcNcmSfDkwova5AACAPwAAgD960YS+DG8xP3jIQD42Rd6+cNZ1vmUUUD4AAAAAAAAAAJpfar3OALs/+vKVvqWc5b182gG+wLb7vQAAAAAAAAAAmmk7O1zLXrpgcOe6XA0JtjkdBbpSTQM6AACAPwAAgD9megy87CHCuXO2wDt1vyY2zF4nu5ZxIDUAAIA/AACAP000C732lGK6jnz3OQd37jUzUqs6BWkMuQAAgD8AAIA/MzDBvBRgg7pc7pu6XIqLtYAc5rnycrQ5AACAPwAAgD/NsJC7j/JiutBgYrxk6p62RBX3uv2tDjYAAIA/AACAP80SDb0pYFy6QohSvMOJJr1slJA7XvklPQAAAAAAAAAAM8jFPMN9P7rXm5G7g/fztgeseTuh2ag6AACAPwAAgD+zvUy9rgeAOdt7WrqNhEk7lFQjO/rjXj0AAAAAAAAAAMDOnb17JqS6WtmSOwY/SDi4/gi6kdqpuAAAgD8AAIA/AEkYva4Hnbh7vVE6xJUTNnNEortKUXW5AACAPwAAgD9mEUm99iRRuuottzjLU0O2B0xfO7Odz7cAAIA/AACAP2a2Hz171Iy6iHzjOYwoAjVkN+Y67K0DuQAAgD8AAIA/TWByva6npbg9wA67n+WStmVB1bp3gQo2AACAPwAAgD9N6GS9SM+3ugshG7q334U0BjU6ujoRMTkAAIA/AACAP2aATDwfXfq5EgRRtqCLhbEjVkY7CkB/NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINExtqQNrckCUhpRSlIwBbJRNlwOMAXSUR0ChOGxjz7MxdX2UKGgGaAloD0MIsI14shu9ZUCUhpRSlGgVTegDaBZHQKE4ruMuOCJ1fZQoaAZoCWgPQwipaKz9HTJkQJSGlFKUaBVN6ANoFkdAoTjvbKzRhXV9lChoBmgJaA9DCHB87ZmlrGRAlIaUUpRoFU3oA2gWR0ChOszeGfwrdX2UKGgGaAloD0MI96xrtBwlYkCUhpRSlGgVTegDaBZHQKE7bkS26TZ1fZQoaAZoCWgPQwjtRElIpBRmQJSGlFKUaBVN6ANoFkdAoTxCf4AS4HV9lChoBmgJaA9DCGQ6dHpe3GJAlIaUUpRoFU3oA2gWR0ChPT8cU/OddX2UKGgGaAloD0MIPdNLjGUcc0CUhpRSlGgVS+xoFkdAoT5T1schknV9lChoBmgJaA9DCHSV7q4zhWJAlIaUUpRoFU3oA2gWR0ChQBnxri2ldX2UKGgGaAloD0MILeqT3GGSXkCUhpRSlGgVTegDaBZHQKFAL3yqdYp1fZQoaAZoCWgPQwixicxc4IthQJSGlFKUaBVN6ANoFkdAoUHvoPkJbHV9lChoBmgJaA9DCNRIS+Xtt2ZAlIaUUpRoFU3oA2gWR0ChQmHf/FR6dX2UKGgGaAloD0MIuOUjKekBZUCUhpRSlGgVTegDaBZHQKFC1Hd43WF1fZQoaAZoCWgPQwjUX6+wYAJgQJSGlFKUaBVN6ANoFkdAoUXPiPyTZHV9lChoBmgJaA9DCHhgAOHDPGVAlIaUUpRoFU3oA2gWR0ChR5YUeuFIdX2UKGgGaAloD0MIRML3/oYHZkCUhpRSlGgVTegDaBZHQKFH8SeRPoF1fZQoaAZoCWgPQwh002achilkQJSGlFKUaBVN6ANoFkdAoUgzdFfAsXV9lChoBmgJaA9DCOWXwRgRdmdAlIaUUpRoFU3oA2gWR0ChSU+x4Y78dX2UKGgGaAloD0MI09heC/oRZECUhpRSlGgVTegDaBZHQKFJlXYDklx1fZQoaAZoCWgPQwi1cFmFTednQJSGlFKUaBVN6ANoFkdAoUydxjriVHV9lChoBmgJaA9DCBu8r8qFjmJAlIaUUpRoFU3oA2gWR0ChTVnBUJfIdX2UKGgGaAloD0MISYYcW8+XYkCUhpRSlGgVTegDaBZHQKFQE/47A+J1fZQoaAZoCWgPQwg4E9OFWF5iQJSGlFKUaBVN6ANoFkdAoVCwuoP07XV9lChoBmgJaA9DCP/sR4rIBmVAlIaUUpRoFU3oA2gWR0ChUtu+ZgG9dX2UKGgGaAloD0MIZk8Cm/MsZ0CUhpRSlGgVTegDaBZHQKFUD3fyf+V1fZQoaAZoCWgPQwgL7gc8MEFoQJSGlFKUaBVN6ANoFkdAoVZgBLf1pXV9lChoBmgJaA9DCLx4P24/VWBAlIaUUpRoFU3oA2gWR0ChVzi2MKkVdX2UKGgGaAloD0MIfQOTG8VfZECUhpRSlGgVTegDaBZHQKFY5GSZBs11fZQoaAZoCWgPQwhlwi/1c3ZjQJSGlFKUaBVN6ANoFkdAoVl147ihnXV9lChoBmgJaA9DCOhrlstGbWNAlIaUUpRoFU3oA2gWR0ChXA66z3RHdX2UKGgGaAloD0MIGoaPiKnKZECUhpRSlGgVTegDaBZHQKFctLV4HHF1fZQoaAZoCWgPQwg5Q3HHG0dgQJSGlFKUaBVN6ANoFkdAoV1w6ySmqHV9lChoBmgJaA9DCHIW9rRDYGRAlIaUUpRoFU3oA2gWR0ChXgW7nPmgdX2UKGgGaAloD0MIf6SIDCtHYECUhpRSlGgVTegDaBZHQKFe7HpbD/F1fZQoaAZoCWgPQwhqaW6FMPNmQJSGlFKUaBVN6ANoFkdAoV8CIpH7QHV9lChoBmgJaA9DCM7+QLntIWhAlIaUUpRoFU3oA2gWR0ChXylWXC0odX2UKGgGaAloD0MIbVUS2QcrZECUhpRSlGgVTegDaBZHQKFfhollbvB1fZQoaAZoCWgPQwj+CwQBsmBgQJSGlFKUaBVN6ANoFkdAoV/6f8MuvnV9lChoBmgJaA9DCHIVi98UPGVAlIaUUpRoFU3oA2gWR0ChYPzU7Sy/dX2UKGgGaAloD0MIYVW9/M6lbkCUhpRSlGgVTeoCaBZHQKFhnM5fdAR1fZQoaAZoCWgPQwh5AfbRKbVgQJSGlFKUaBVN6ANoFkdAoWIb9ETg23V9lChoBmgJaA9DCHmsGRlkLWNAlIaUUpRoFU3oA2gWR0ChYlM1baAXdX2UKGgGaAloD0MIvf+PEyZFYkCUhpRSlGgVTegDaBZHQKFieO/+Kj11fZQoaAZoCWgPQwjUEFX4Mz1kQJSGlFKUaBVN6ANoFkdAoWQLfek563V9lChoBmgJaA9DCPUsCOV9/mBAlIaUUpRoFU3oA2gWR0ChZHE9dNWVdX2UKGgGaAloD0MI7nw/Nd7RYkCUhpRSlGgVTegDaBZHQKFl5G4I8hd1fZQoaAZoCWgPQwi86gHzEMhgQJSGlFKUaBVN6ANoFkdAoWbYeaKDTXV9lChoBmgJaA9DCF9AL9y5/2JAlIaUUpRoFU3oA2gWR0ChZyIxgy/LdX2UKGgGaAloD0MIelImNbREY0CUhpRSlGgVTegDaBZHQKFoa+hXbM51fZQoaAZoCWgPQwhntcAeE25fQJSGlFKUaBVN6ANoFkdAoWmCBshxHXV9lChoBmgJaA9DCNl6hnBMUGNAlIaUUpRoFU3oA2gWR0ChbHgwXZXddX2UKGgGaAloD0MIP49RnvnOcUCUhpRSlGgVTRUBaBZHQKFux8Yyfth1fZQoaAZoCWgPQwg0R1Z+GfdlQJSGlFKUaBVN6ANoFkdAoW7ZKFqSHXV9lChoBmgJaA9DCAddwqE3VGVAlIaUUpRoFU3oA2gWR0Chbv5VfeDWdX2UKGgGaAloD0MI9RQ5RFzYZkCUhpRSlGgVTegDaBZHQKFvMSElE7Z1fZQoaAZoCWgPQwhaKm9HuPFnQJSGlFKUaBVN6ANoFkdAoXBtt8/lhnV9lChoBmgJaA9DCJoF2h1SIGVAlIaUUpRoFU3oA2gWR0ChcnzDO1OTdX2UKGgGaAloD0MI0XR2MjgSYkCUhpRSlGgVTegDaBZHQKFz+R5kbxV1fZQoaAZoCWgPQwgMlBRYAH1gQJSGlFKUaBVN6ANoFkdAoXU3aYeDF3V9lChoBmgJaA9DCElHOZjNb2dAlIaUUpRoFU3oA2gWR0Chd73d9Dx9dX2UKGgGaAloD0MIJvxSP28EaECUhpRSlGgVTegDaBZHQKF30weNkvt1fZQoaAZoCWgPQwiOXDelvKJhQJSGlFKUaBVN6ANoFkdAoXf3PZ7HAHV9lChoBmgJaA9DCM07TtERI2VAlIaUUpRoFU3oA2gWR0CheUDhcZ+AdX2UKGgGaAloD0MI5SoWvynnaUCUhpRSlGgVTegDaBZHQKF52iAUcn51fZQoaAZoCWgPQwhXe9gLhfNmQJSGlFKUaBVN6ANoFkdAoXoyqyWzGHV9lChoBmgJaA9DCD8Cf/j550jAlIaUUpRoFU2nAWgWR0Che4N78ejmdX2UKGgGaAloD0MIGxNiLikFYkCUhpRSlGgVTegDaBZHQKF8GdUbT+h1fZQoaAZoCWgPQwhe2JqtvDZjQJSGlFKUaBVN6ANoFkdAoXxc0SAYpHV9lChoBmgJaA9DCM1WXvK/LGFAlIaUUpRoFU3oA2gWR0ChfKAzYVZcdX2UKGgGaAloD0MI1PIDV3nRZECUhpRSlGgVTegDaBZHQKF+V238XN11fZQoaAZoCWgPQwh7Z7RVyb9kQJSGlFKUaBVN6ANoFkdAoX8ClrM1THV9lChoBmgJaA9DCNkiaTd6hWdAlIaUUpRoFU3oA2gWR0Chf9mZmZmadX2UKGgGaAloD0MIcO8a9KWnZkCUhpRSlGgVTegDaBZHQKGA26GxlhB1fZQoaAZoCWgPQwiNz2T/PPplQJSGlFKUaBVN6ANoFkdAoYHx6KLsKXV9lChoBmgJaA9DCEz/klSmwWVAlIaUUpRoFU3oA2gWR0Chg62saKk3dX2UKGgGaAloD0MIZVBtcCKLXkCUhpRSlGgVTegDaBZHQKGDwjtXxON1fZQoaAZoCWgPQwgQAvIl1IJkQJSGlFKUaBVN6ANoFkdAoYVp3kgfVHV9lChoBmgJaA9DCGwGuCDb7WVAlIaUUpRoFU3oA2gWR0Chhdx3eN1hdX2UKGgGaAloD0MI/1nz469mY0CUhpRSlGgVTegDaBZHQKGGURT0g8t1fZQoaAZoCWgPQwjcDg2LUYhQQJSGlFKUaBVLkWgWR0ChiEyJKraNdX2UKGgGaAloD0MIpABRMGMTYECUhpRSlGgVTegDaBZHQKGJVVU+9rZ1fZQoaAZoCWgPQwgLmpZYGRdkQJSGlFKUaBVN6ANoFkdAoYsfb9If83V9lChoBmgJaA9DCL+ZmC5EV2VAlIaUUpRoFU3oA2gWR0Chi3cf/3nIdX2UKGgGaAloD0MIbjSAt8DHZkCUhpRSlGgVTegDaBZHQKGLtkYoAn51fZQoaAZoCWgPQwgzNJ4IYj9hQJSGlFKUaBVN6ANoFkdAoYy6J9AoonV9lChoBmgJaA9DCBMteTyt5WFAlIaUUpRoFU3oA2gWR0ChjPm0NSZSdX2UKGgGaAloD0MIzlFHx9VqYkCUhpRSlGgVTegDaBZHQKGP1KPGQ0Z1fZQoaAZoCWgPQwjAIypUt+5lQJSGlFKUaBVN6ANoFkdAoZCMw5/9YXV9lChoBmgJaA9DCAN64c4F9mhAlIaUUpRoFU3oA2gWR0Chkyky+HrRdX2UKGgGaAloD0MIJ4kl5e6dZkCUhpRSlGgVTegDaBZHQKGTvl/6O5t1fZQoaAZoCWgPQwiDv1/MloFfQJSGlFKUaBVN6ANoFkdAoZXPT9bX6XV9lChoBmgJaA9DCB5rRga5OV5AlIaUUpRoFU3oA2gWR0Chlu8Udq+KdX2UKGgGaAloD0MIw5s1eN8WZUCUhpRSlGgVTegDaBZHQKGZGMJhOQB1fZQoaAZoCWgPQwhw0jQomjdjQJSGlFKUaBVN6ANoFkdAoZnlruYx+XV9lChoBmgJaA9DCFBxHHg1xmdAlIaUUpRoFU3oA2gWR0Chm4R02cawdX2UKGgGaAloD0MIdlJflnauZ0CUhpRSlGgVTegDaBZHQKGcFXKbKA91fZQoaAZoCWgPQwi4dqIkJKRwQJSGlFKUaBVNxAJoFkdAoZ2iesgdO3V9lChoBmgJaA9DCMCUgQNaQmZAlIaUUpRoFU3oA2gWR0ChnzTO5avBdX2UKGgGaAloD0MIcHoX70eQY0CUhpRSlGgVTegDaBZHQKGf5oL5RCR1fZQoaAZoCWgPQwjQCgxZXfhkQJSGlFKUaBVN6ANoFkdAoaBuzByjpXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 260.98297673351794, "std_reward": 25.020275026195673, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T23:24:53.285995"}
 
1
+ {"mean_reward": 281.3745319227213, "std_reward": 14.104102601538244, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T00:31:53.200124"}