--- library_name: transformers base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - f1 model-index: - name: twitter-roberta-base-sentiment-latest_12112024T150727 results: [] --- # twitter-roberta-base-sentiment-latest_12112024T150727 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3348 - F1: 0.4579 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 600 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Rate | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | No log | 0.9942 | 86 | 1.8285 | 0.1193 | 0.0000 | | No log | 2.0 | 173 | 1.8031 | 0.3302 | 0.0000 | | No log | 2.9942 | 259 | 1.5578 | 0.3690 | 0.0000 | | No log | 4.0 | 346 | 1.4611 | 0.4092 | 0.0000 | | No log | 4.9942 | 432 | 1.4700 | 0.4079 | 0.0000 | | 1.3786 | 6.0 | 519 | 1.3348 | 0.4579 | 0.0000 | | 1.3786 | 6.9942 | 605 | 1.6543 | 0.4193 | 1e-05 | | 1.3786 | 8.0 | 692 | 1.4421 | 0.4858 | 1e-05 | | 1.3786 | 8.9942 | 778 | 1.5573 | 0.4603 | 0.0000 | | 1.3786 | 10.0 | 865 | 1.5451 | 0.4797 | 0.0000 | | 1.3786 | 10.9942 | 951 | 1.8338 | 0.4396 | 0.0000 | | 0.6407 | 12.0 | 1038 | 1.9383 | 0.4364 | 0.0000 | | 0.6407 | 12.9942 | 1124 | 1.7573 | 0.4680 | 0.0000 | | 0.6407 | 14.0 | 1211 | 1.8321 | 0.4735 | 0.0000 | | 0.6407 | 14.9942 | 1297 | 1.9524 | 0.4619 | 0.0000 | | 0.6407 | 16.0 | 1384 | 2.1822 | 0.4591 | 0.0000 | | 0.6407 | 16.9942 | 1470 | 2.1302 | 0.4686 | 6e-06 | | 0.2608 | 18.0 | 1557 | 2.5139 | 0.4467 | 0.0000 | | 0.2608 | 18.9942 | 1643 | 2.3385 | 0.4641 | 0.0000 | | 0.2608 | 20.0 | 1730 | 2.3281 | 0.4726 | 0.0000 | | 0.2608 | 20.9942 | 1816 | 2.5489 | 0.4722 | 0.0000 | | 0.2608 | 22.0 | 1903 | 2.5727 | 0.4745 | 0.0000 | | 0.2608 | 22.9942 | 1989 | 2.5584 | 0.4694 | 0.0000 | | 0.1026 | 24.0 | 2076 | 2.8115 | 0.4584 | 0.0000 | | 0.1026 | 24.9942 | 2162 | 2.7270 | 0.4691 | 0.0000 | | 0.1026 | 26.0 | 2249 | 2.7379 | 0.4746 | 7e-07 | | 0.1026 | 26.9942 | 2335 | 2.8336 | 0.4757 | 4e-07 | | 0.1026 | 28.0 | 2422 | 2.8201 | 0.4703 | 2e-07 | | 0.057 | 28.9942 | 2508 | 2.8292 | 0.4691 | 0.0 | | 0.057 | 29.8266 | 2580 | 2.8271 | 0.4691 | 0.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.19.1