Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +14 -14
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.05 +/- 0.18
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8482e802974bbd2ae6350bbebc2ec1d12abfa0bc3e1071fe94ee87f42e6a6fa0
|
3 |
+
size 108069
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -19,24 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,15 +56,15 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
-
"gamma": 0.
|
68 |
"gae_lambda": 1.0,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 100000,
|
23 |
+
"_total_timesteps": 100000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1690641892544384978,
|
28 |
+
"learning_rate": 0.001,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAagfQPukKmLoVyBQ/agfQPukKmLoVyBQ/agfQPukKmLoVyBQ/agfQPukKmLoVyBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKAGrv/k8wz8pHcI/lhT4vl30kT8tLxq/vSaNv1UcPT+NjpW/LM0zP5P50T9NUqS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABqB9A+6QqYuhXIFD+QVki84fhau0afHDxqB9A+6QqYuhXIFD+QVki84fhau0afHDxqB9A+6QqYuhXIFD+QVki84fhau0afHDxqB9A+6QqYuhXIFD+QVki84fhau0afHDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.40630656 -0.00115999 0.581178 ]\n [ 0.40630656 -0.00115999 0.581178 ]\n [ 0.40630656 -0.00115999 0.581178 ]\n [ 0.40630656 -0.00115999 0.581178 ]]",
|
38 |
+
"desired_goal": "[[-1.3359728 1.5252982 1.5165149 ]\n [-0.48453206 1.1402699 -0.60228235]\n [-1.1027447 0.73871356 -1.1684128 ]\n [ 0.7023494 1.6404289 -0.3209404 ]]",
|
39 |
+
"observation": "[[ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]\n [ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]\n [ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]\n [ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQFjhPCRhED40Q/c8tqnovUxEzL266UM+lLsWPQEXTj3TN8Y9cNhVOhSH4z3rQkk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.0275079 0.14099556 0.03018341]\n [-0.11360495 -0.09973964 0.19132128]\n [ 0.03679998 0.05031491 0.09678616]\n [ 0.00081576 0.11109748 0.19654433]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW7Iqwk2G+r+UhpRSlIwBbJRLMowBdJRHQG7Cpdrwe/51fZQoaAZoCWgPQwhJ88e0Ns3yv5SGlFKUaBVLMmgWR0BuvopvxYq5dX2UKGgGaAloD0MIEtkHWRaM+7+UhpRSlGgVSzJoFkdAbrqXP7el9HV9lChoBmgJaA9DCPGcLSC0nva/lIaUUpRoFUsyaBZHQG62jnmq5sl1fZQoaAZoCWgPQwi54XfTLbvwv5SGlFKUaBVLMmgWR0Bu2cQiA2AHdX2UKGgGaAloD0MIN+Fembcq9L+UhpRSlGgVSzJoFkdAbtWn5SFXaXV9lChoBmgJaA9DCHehuU4jbfi/lIaUUpRoFUsyaBZHQG7Rs/QjUut1fZQoaAZoCWgPQwgGvqJbryn3v5SGlFKUaBVLMmgWR0BuzarBCUosdX2UKGgGaAloD0MIvHfUmBDz/L+UhpRSlGgVSzJoFkdAbvKKneizs3V9lChoBmgJaA9DCAZINIEiVvW/lIaUUpRoFUsyaBZHQG7ubkwN9Yx1fZQoaAZoCWgPQwhwlLw6x0D8v5SGlFKUaBVLMmgWR0Bu6oXbdrO8dX2UKGgGaAloD0MIVTNrKSDt9L+UhpRSlGgVSzJoFkdAbuZ+mWMS9XV9lChoBmgJaA9DCLSR66aUV/S/lIaUUpRoFUsyaBZHQG8Ci7TUiIN1fZQoaAZoCWgPQwhaY9AJoYP0v5SGlFKUaBVLMmgWR0Bu/mmDUVi4dX2UKGgGaAloD0MI/psXJ74a97+UhpRSlGgVSzJoFkdAbvpyKekHlnV9lChoBmgJaA9DCOuNWmH6Hvm/lIaUUpRoFUsyaBZHQG72ZPuXu3N1fZQoaAZoCWgPQwhq9kArMKT2v5SGlFKUaBVLMmgWR0BvEcdeY2KmdX2UKGgGaAloD0MI9UwvMZZp8b+UhpRSlGgVSzJoFkdAbw2o/iYLLXV9lChoBmgJaA9DCPDd5o2TgvW/lIaUUpRoFUsyaBZHQG8Jrqlgtvp1fZQoaAZoCWgPQwj6uaEpO730v5SGlFKUaBVLMmgWR0BvBZ5iVjZtdX2UKGgGaAloD0MIy03U0txK+r+UhpRSlGgVSzJoFkdAbyK9nscABHV9lChoBmgJaA9DCEeRtYZS+/m/lIaUUpRoFUsyaBZHQG8eoWpIczZ1fZQoaAZoCWgPQwiXcr7Ye/H2v5SGlFKUaBVLMmgWR0BvGq/j81n/dX2UKGgGaAloD0MIGan3VE7797+UhpRSlGgVSzJoFkdAbxaf/WDpT3V9lChoBmgJaA9DCK+Xpghw+vS/lIaUUpRoFUsyaBZHQG8ycKgIyCZ1fZQoaAZoCWgPQwilLa7xmez7v5SGlFKUaBVLMmgWR0BvLk5EMLF5dX2UKGgGaAloD0MIspsZ/Wi48b+UhpRSlGgVSzJoFkdAbypWilBQenV9lChoBmgJaA9DCBgK2A5GbPe/lIaUUpRoFUsyaBZHQG8mRq46Oo51fZQoaAZoCWgPQwgysI7jh8ryv5SGlFKUaBVLMmgWR0BvQWeBg/kedX2UKGgGaAloD0MI/TBCeLRx9r+UhpRSlGgVSzJoFkdAbz1Cx/ustHV9lChoBmgJaA9DCCFblq/LsPO/lIaUUpRoFUsyaBZHQG85UUoKD011fZQoaAZoCWgPQwiUMNP2r6zyv5SGlFKUaBVLMmgWR0BvNU/pt78fdX2UKGgGaAloD0MIeuHOhZFe8b+UhpRSlGgVSzJoFkdAb1CNVBD5TXV9lChoBmgJaA9DCE91yM1wQ/a/lIaUUpRoFUsyaBZHQG9MZ5iVjZt1fZQoaAZoCWgPQwj9+EuL+uT4v5SGlFKUaBVLMmgWR0BvSGueSSvDdX2UKGgGaAloD0MIGmzqPCp+8r+UhpRSlGgVSzJoFkdAb0RcTrVvuXV9lChoBmgJaA9DCC7nUlxVtvO/lIaUUpRoFUsyaBZHQG9fcVYZEUl1fZQoaAZoCWgPQwj3r6w0KQX3v5SGlFKUaBVLMmgWR0BvW07CBPKudX2UKGgGaAloD0MIinPU0XF19L+UhpRSlGgVSzJoFkdAb1dX7Lt/nXV9lChoBmgJaA9DCOeNk8K8R/S/lIaUUpRoFUsyaBZHQG9TRrJr+Hd1fZQoaAZoCWgPQwhANPPkmsL2v5SGlFKUaBVLMmgWR0BvbwoCuEEldX2UKGgGaAloD0MI1PIDV3kC9r+UhpRSlGgVSzJoFkdAb2ruiN83M3V9lChoBmgJaA9DCDICKhxBavS/lIaUUpRoFUsyaBZHQG9m832mHgx1fZQoaAZoCWgPQwjequtQTQn3v5SGlFKUaBVLMmgWR0BvYuJm/WUbdX2UKGgGaAloD0MI9YO6SKFs97+UhpRSlGgVSzJoFkdAb32lLvkRz3V9lChoBmgJaA9DCExSmWIOQva/lIaUUpRoFUsyaBZHQG95icG1QZZ1fZQoaAZoCWgPQwjZJaq3Bnb1v5SGlFKUaBVLMmgWR0BvdZQWN3nqdX2UKGgGaAloD0MIWoC21azz/L+UhpRSlGgVSzJoFkdAb3GEal1r7HV9lChoBmgJaA9DCHWsUnqmV/e/lIaUUpRoFUsyaBZHQG+NEE9t/F11fZQoaAZoCWgPQwgPZD21+irzv5SGlFKUaBVLMmgWR0BviOq94/u9dX2UKGgGaAloD0MIHXOesS9Z+r+UhpRSlGgVSzJoFkdAb4TvoePq93V9lChoBmgJaA9DCFuwVBfwsvi/lIaUUpRoFUsyaBZHQG+A3cYZVGV1fZQoaAZoCWgPQwiAgosVNVj7v5SGlFKUaBVLMmgWR0Bvm/j4pMHsdX2UKGgGaAloD0MI3GeVmdL687+UhpRSlGgVSzJoFkdAb5fSZ0CA+nV9lChoBmgJaA9DCJMZbyu9tva/lIaUUpRoFUsyaBZHQG+T2pZOi351fZQoaAZoCWgPQwjxR1Fn7mHzv5SGlFKUaBVLMmgWR0Bvj8r7O3UhdX2UKGgGaAloD0MI2lcepKeI+b+UhpRSlGgVSzJoFkdAb6xYVZcLSnV9lChoBmgJaA9DCK01lNqL6PO/lIaUUpRoFUsyaBZHQG+oNOmBOHp1fZQoaAZoCWgPQwjIXBlUG1z2v5SGlFKUaBVLMmgWR0BvpEFKTSssdX2UKGgGaAloD0MIFeC7zRun+r+UhpRSlGgVSzJoFkdAb6AvbGm1pnV9lChoBmgJaA9DCLag98YQAPu/lIaUUpRoFUsyaBZHQG+7ScslLOB1fZQoaAZoCWgPQwg2rn/XZ072v5SGlFKUaBVLMmgWR0Bvtyfe1rqMdX2UKGgGaAloD0MIJxdjYB2H9L+UhpRSlGgVSzJoFkdAb7M2E0zj3nV9lChoBmgJaA9DCGlTdY9sLva/lIaUUpRoFUsyaBZHQG+vKm8/Uvx1fZQoaAZoCWgPQwiZEkn0Mor6v5SGlFKUaBVLMmgWR0Bvys/GEPDpdX2UKGgGaAloD0MI34juWdeo87+UhpRSlGgVSzJoFkdAb8atrbg0j3V9lChoBmgJaA9DCN0lcVZEjfG/lIaUUpRoFUsyaBZHQG/CtcOby6N1fZQoaAZoCWgPQwjBi76CNKP5v5SGlFKUaBVLMmgWR0BvvqTINmUXdX2UKGgGaAloD0MInBcnvtoR+L+UhpRSlGgVSzJoFkdAb9sdsBQvYnV9lChoBmgJaA9DCMNGWb+ZmPK/lIaUUpRoFUsyaBZHQG/W+mWMS9N1fZQoaAZoCWgPQwiP+usVFpz1v5SGlFKUaBVLMmgWR0Bv0wAMlTm5dX2UKGgGaAloD0MIgVziyANR9r+UhpRSlGgVSzJoFkdAb87wCr92o3V9lChoBmgJaA9DCP58W7BUl/a/lIaUUpRoFUsyaBZHQG/quU2UB4l1fZQoaAZoCWgPQwhAbOnRVM/1v5SGlFKUaBVLMmgWR0Bv5pQBPsRhdX2UKGgGaAloD0MIs+pztRVbAMCUhpRSlGgVSzJoFkdAb+KZdfLLZHV9lChoBmgJaA9DCMfzGVBvBva/lIaUUpRoFUsyaBZHQG/ehttQ9A51fZQoaAZoCWgPQwhnJhjONYz0v5SGlFKUaBVLMmgWR0Bv+QsTWXkYdX2UKGgGaAloD0MIccyyJ4HN+b+UhpRSlGgVSzJoFkdAb/Tof0VafXV9lChoBmgJaA9DCDPfwU8cgPm/lIaUUpRoFUsyaBZHQG/w7LU1AJN1fZQoaAZoCWgPQwjrUiP0M7X1v5SGlFKUaBVLMmgWR0Bv7Nv/BFd+dX2UKGgGaAloD0MIcCNli6Sd8b+UhpRSlGgVSzJoFkdAcAQWMju8b3V9lChoBmgJaA9DCPEPW3o0lfm/lIaUUpRoFUsyaBZHQHACBfrrxAl1fZQoaAZoCWgPQwisArUYPMz3v5SGlFKUaBVLMmgWR0BwAAhY/3WXdX2UKGgGaAloD0MIVpkprb8l+L+UhpRSlGgVSzJoFkdAb/wB6KLsKXV9lChoBmgJaA9DCO7qVWR0gPS/lIaUUpRoFUsyaBZHQHALDNY8uBd1fZQoaAZoCWgPQwgMA5ZcxaLyv5SGlFKUaBVLMmgWR0BwCPsjVx0ddX2UKGgGaAloD0MISbw8nSuK+L+UhpRSlGgVSzJoFkdAcAb8lolD4XV9lChoBmgJaA9DCOvE5XgFovK/lIaUUpRoFUsyaBZHQHAE85GSZBt1fZQoaAZoCWgPQwjbF9ALd67zv5SGlFKUaBVLMmgWR0BwEqShakhzdX2UKGgGaAloD0MIUS0iismb9L+UhpRSlGgVSzJoFkdAcBCbdadMCnV9lChoBmgJaA9DCCGunL0z2vW/lIaUUpRoFUsyaBZHQHAOpMg2ZRd1fZQoaAZoCWgPQwhHdTqQ9RT2v5SGlFKUaBVLMmgWR0BwDJ44ZMtcdX2UKGgGaAloD0MILlVpi2v89L+UhpRSlGgVSzJoFkdAcBq4iosI3XV9lChoBmgJaA9DCE6aBkXzQPe/lIaUUpRoFUsyaBZHQHAYqh6By0d1fZQoaAZoCWgPQwiXqx+b5If0v5SGlFKUaBVLMmgWR0BwFrD+BH09dX2UKGgGaAloD0MIxJPdzOhH9r+UhpRSlGgVSzJoFkdAcBSsV+I/JXV9lChoBmgJaA9DCHke3J21G/e/lIaUUpRoFUsyaBZHQHAnOiSJTER1fZQoaAZoCWgPQwi0ykxp/a32v5SGlFKUaBVLMmgWR0BwJS4+bExZdX2UKGgGaAloD0MIFxHF5A1w87+UhpRSlGgVSzJoFkdAcCM17IDHO3V9lChoBmgJaA9DCL5qZcIvdfS/lIaUUpRoFUsyaBZHQHAhNWEK3NN1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 5000,
|
66 |
"n_steps": 5,
|
67 |
+
"gamma": 0.95,
|
68 |
"gae_lambda": 1.0,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:912c9b9e8b8766f240e2c60bc9e41d09e03c76d2415c49e4dfd1a0dac6a4b7c7
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:965a740e65bbd0b70cbcdb0a4d6721b3a54b92979be76431081f619265859888
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff9c2a46440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9c2a48440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690638504115474609, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9ZrRPpPlCT2d3RY/9ZrRPpPlCT2d3RY/9ZrRPpPlCT2d3RY/9ZrRPpPlCT2d3RY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATB0fP8gUsb9Hnb8+uE7Ov1CEZD6bOb4/tsfQvzb/lD9XWcM/2U0jvx8Xmz9qNXI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1mtE+k+UJPZ3dFj9PFaE8yMeiOy1Rkzz1mtE+k+UJPZ3dFj9PFaE8yMeiOy1Rkzz1mtE+k+UJPZ3dFj9PFaE8yMeiOy1Rkzz1mtE+k+UJPZ3dFj9PFaE8yMeiOy1RkzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40938535 0.0336662 0.58931905]\n [0.40938535 0.0336662 0.58931905]\n [0.40938535 0.0336662 0.58931905]\n [0.40938535 0.0336662 0.58931905]]", "desired_goal": "[[ 0.6215408 -1.3834467 0.3742468 ]\n [-1.6117773 0.22316098 1.486133 ]\n [-1.6310947 1.1640384 1.5261639 ]\n [-0.6379066 1.2116431 0.23653188]]", "observation": "[[0.40938535 0.0336662 0.58931905 0.01966348 0.00496766 0.01798304]\n [0.40938535 0.0336662 0.58931905 0.01966348 0.00496766 0.01798304]\n [0.40938535 0.0336662 0.58931905 0.01966348 0.00496766 0.01798304]\n [0.40938535 0.0336662 0.58931905 0.01966348 0.00496766 0.01798304]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALI5nvQH8tL2y/NU8eZ23PCXBAj4Op+Q9rsZauwa7Fj2hmZw91oYGPkJrCj6Poi0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05653207 -0.08837128 0.02612147]\n [ 0.02241396 0.12768991 0.11164676]\n [-0.00333826 0.03679945 0.0764649 ]\n [ 0.13137373 0.13517478 0.16956542]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIczCbAMOiFcCUhpRSlIwBbJRLMowBdJRHQKa7DgCwKSh1fZQoaAZoCWgPQwi1VN6OcNoJwJSGlFKUaBVLMmgWR0Cmus2FFlTWdX2UKGgGaAloD0MIKZfGL7xyCMCUhpRSlGgVSzJoFkdAprqLuIAOrnV9lChoBmgJaA9DCPeUnBN7iAHAlIaUUpRoFUsyaBZHQKa6TIAfdRB1fZQoaAZoCWgPQwgW9rTDX9P8v5SGlFKUaBVLMmgWR0CmvARbr1M/dX2UKGgGaAloD0MIob/QI0YvBcCUhpRSlGgVSzJoFkdAprvEbaRISXV9lChoBmgJaA9DCLmpgeZzLgHAlIaUUpRoFUsyaBZHQKa7gzZ6D5F1fZQoaAZoCWgPQwjCEg8om3L6v5SGlFKUaBVLMmgWR0Cmu0Uc4o7WdX2UKGgGaAloD0MILcxCO6c5DsCUhpRSlGgVSzJoFkdAprz7FId2gXV9lChoBmgJaA9DCDcz+tFwKgzAlIaUUpRoFUsyaBZHQKa8uqnWJ791fZQoaAZoCWgPQwjVPEfku1QIwJSGlFKUaBVLMmgWR0CmvHjklu3udX2UKGgGaAloD0MIhllo5zTrGMCUhpRSlGgVSzJoFkdAprw6D7Ikq3V9lChoBmgJaA9DCOyEl+DU5wvAlIaUUpRoFUsyaBZHQKa94s9SuQp1fZQoaAZoCWgPQwgou5nRj0YFwJSGlFKUaBVLMmgWR0CmvaJoCdSVdX2UKGgGaAloD0MIgJnv4CduCMCUhpRSlGgVSzJoFkdApr1gs3AEdXV9lChoBmgJaA9DCPSJPEm6JgDAlIaUUpRoFUsyaBZHQKa9Id5prUN1fZQoaAZoCWgPQwgo0ZLH01IJwJSGlFKUaBVLMmgWR0CmvsqJuVHGdX2UKGgGaAloD0MIrWnecYpOD8CUhpRSlGgVSzJoFkdApr6KPCEYfnV9lChoBmgJaA9DCL8LW7OVNwnAlIaUUpRoFUsyaBZHQKa+SGbCrLh1fZQoaAZoCWgPQwgQPSmTGtoTwJSGlFKUaBVLMmgWR0CmvglGG21EdX2UKGgGaAloD0MIsOJUa2EmEcCUhpRSlGgVSzJoFkdApr+7q+rU9nV9lChoBmgJaA9DCKEUrdwLDAfAlIaUUpRoFUsyaBZHQKa/ezlcQiB1fZQoaAZoCWgPQwjlt+hkqZUOwJSGlFKUaBVLMmgWR0CmvzmO2iL3dX2UKGgGaAloD0MIzEHQ0aq2B8CUhpRSlGgVSzJoFkdApr77EUCaJHV9lChoBmgJaA9DCLHDmPT30gzAlIaUUpRoFUsyaBZHQKbAtMibDuV1fZQoaAZoCWgPQwjAIVSp2QMGwJSGlFKUaBVLMmgWR0CmwHSyt3fRdX2UKGgGaAloD0MIdv2C3bAt/b+UhpRSlGgVSzJoFkdApsAy9du50HV9lChoBmgJaA9DCOKS407pYALAlIaUUpRoFUsyaBZHQKa/8+4b0e51fZQoaAZoCWgPQwikN9xHbg0HwJSGlFKUaBVLMmgWR0CmwZwkX1rZdX2UKGgGaAloD0MIYRiw5CqWDcCUhpRSlGgVSzJoFkdApsFb8P4EfXV9lChoBmgJaA9DCGOYE7TJwQXAlIaUUpRoFUsyaBZHQKbBGit7rs11fZQoaAZoCWgPQwgZjBGJQusHwJSGlFKUaBVLMmgWR0CmwNr5hz/7dX2UKGgGaAloD0MIzzEge727BcCUhpRSlGgVSzJoFkdApsKEUGmk33V9lChoBmgJaA9DCP1NKETAgQjAlIaUUpRoFUsyaBZHQKbCRAPd2xJ1fZQoaAZoCWgPQwhYqaCi6hcGwJSGlFKUaBVLMmgWR0CmwgJQDV6NdX2UKGgGaAloD0MI2UKQgxKGCcCUhpRSlGgVSzJoFkdApsHDJ+2E03V9lChoBmgJaA9DCBSUopV7YQ3AlIaUUpRoFUsyaBZHQKbDa2BJ7LN1fZQoaAZoCWgPQwhyiSMPRHYIwJSGlFKUaBVLMmgWR0CmwysS00FbdX2UKGgGaAloD0MImifXFMiMB8CUhpRSlGgVSzJoFkdApsLpTAFgUnV9lChoBmgJaA9DCHy0OGOYEwjAlIaUUpRoFUsyaBZHQKbCqgxrSE11fZQoaAZoCWgPQwgqb0c4LZgCwJSGlFKUaBVLMmgWR0CmxFgVfu1GdX2UKGgGaAloD0MIv4BeuHOxFsCUhpRSlGgVSzJoFkdApsQXn+yZ8nV9lChoBmgJaA9DCC2UTE7tjATAlIaUUpRoFUsyaBZHQKbD1b9qDbt1fZQoaAZoCWgPQwhvD0JAvkQGwJSGlFKUaBVLMmgWR0Cmw5akZaV2dX2UKGgGaAloD0MIhIHn3sPFCcCUhpRSlGgVSzJoFkdApsVH4XXRPXV9lChoBmgJaA9DCGKh1jTvyBTAlIaUUpRoFUsyaBZHQKbFB3pOerd1fZQoaAZoCWgPQwhEbRtGQRAbwJSGlFKUaBVLMmgWR0CmxMXJ5mh/dX2UKGgGaAloD0MIgc05eCY0B8CUhpRSlGgVSzJoFkdApsSHHktEonV9lChoBmgJaA9DCDnQQ20bhgjAlIaUUpRoFUsyaBZHQKbGKmfGuLd1fZQoaAZoCWgPQwipZ0Eo7yMRwJSGlFKUaBVLMmgWR0Cmxeo9cKPXdX2UKGgGaAloD0MI+6wyU1qfCMCUhpRSlGgVSzJoFkdApsWonjQzDXV9lChoBmgJaA9DCPKXFvVJrg/AlIaUUpRoFUsyaBZHQKbFaXpnpSt1fZQoaAZoCWgPQwgIAmTo2AELwJSGlFKUaBVLMmgWR0CmxzjNQj2SdX2UKGgGaAloD0MIzXhb6bX5AsCUhpRSlGgVSzJoFkdApsb4arFOwnV9lChoBmgJaA9DCNjYJaq3FhLAlIaUUpRoFUsyaBZHQKbGtuiN83N1fZQoaAZoCWgPQwiiREseTwsKwJSGlFKUaBVLMmgWR0CmxnfRNRFadX2UKGgGaAloD0MIBmUaTS6mBcCUhpRSlGgVSzJoFkdApsglXeWOZXV9lChoBmgJaA9DCIALsmX5ugbAlIaUUpRoFUsyaBZHQKbH5QMQVbl1fZQoaAZoCWgPQwhZiXlW0ooEwJSGlFKUaBVLMmgWR0Cmx6NOmBOIdX2UKGgGaAloD0MIhh+cTx2LBcCUhpRSlGgVSzJoFkdApsdkMAmzB3V9lChoBmgJaA9DCGrcm98wARbAlIaUUpRoFUsyaBZHQKbJGTnJT2p1fZQoaAZoCWgPQwi0HVN3ZTcKwJSGlFKUaBVLMmgWR0CmyNkdNnGsdX2UKGgGaAloD0MI7fXuj/dKC8CUhpRSlGgVSzJoFkdApsiXWDpTuXV9lChoBmgJaA9DCFTIlXoWxAfAlIaUUpRoFUsyaBZHQKbIWF/x2B91fZQoaAZoCWgPQwgu5BHcSAkTwJSGlFKUaBVLMmgWR0CmygCYCyQgdX2UKGgGaAloD0MIvtnmxvTEAsCUhpRSlGgVSzJoFkdApsnAekpI+XV9lChoBmgJaA9DCAaE1sOXyRPAlIaUUpRoFUsyaBZHQKbJfqOcUdt1fZQoaAZoCWgPQwhZxLDDmDQMwJSGlFKUaBVLMmgWR0CmyT9nK4hEdX2UKGgGaAloD0MIuhKB6h/EF8CUhpRSlGgVSzJoFkdApsrk2LpA2XV9lChoBmgJaA9DCHF0le6uMwjAlIaUUpRoFUsyaBZHQKbKpFb3XZp1fZQoaAZoCWgPQwiXjc75KT4QwJSGlFKUaBVLMmgWR0CmymJ0OmSAdX2UKGgGaAloD0MIsFkuG51zC8CUhpRSlGgVSzJoFkdApsojQzDXOHV9lChoBmgJaA9DCBdky/J1GQzAlIaUUpRoFUsyaBZHQKbL34TK1Xx1fZQoaAZoCWgPQwgz4Cwly2kFwJSGlFKUaBVLMmgWR0Cmy6AGB4D+dX2UKGgGaAloD0MIp1g1CHN7A8CUhpRSlGgVSzJoFkdApstexptaZHV9lChoBmgJaA9DCOFBs+veygHAlIaUUpRoFUsyaBZHQKbLIb4rSVp1fZQoaAZoCWgPQwh1dFyN7EoHwJSGlFKUaBVLMmgWR0CmzU36yjYadX2UKGgGaAloD0MIaam8HeGkFsCUhpRSlGgVSzJoFkdAps0OIbfgrHV9lChoBmgJaA9DCAXAeAYNLRTAlIaUUpRoFUsyaBZHQKbMzUc4o7V1fZQoaAZoCWgPQwgpP6n26ZgSwJSGlFKUaBVLMmgWR0CmzI6r3j+8dX2UKGgGaAloD0MIKSFYVS/fAsCUhpRSlGgVSzJoFkdAps64mAskIHV9lChoBmgJaA9DCGl0B7EzZRPAlIaUUpRoFUsyaBZHQKbOeOCGvfV1fZQoaAZoCWgPQwiVLCeh9LURwJSGlFKUaBVLMmgWR0Cmzjd8zAN5dX2UKGgGaAloD0MIkUQvo1iODMCUhpRSlGgVSzJoFkdAps35BcAzYXV9lChoBmgJaA9DCLH8+bZgSR7AlIaUUpRoFUsyaBZHQKbQJ3Tuv2Z1fZQoaAZoCWgPQwgHsp5afTUHwJSGlFKUaBVLMmgWR0Cmz+eDe0ojdX2UKGgGaAloD0MI4Xmp2Jj3GcCUhpRSlGgVSzJoFkdAps+mZy+6AnV9lChoBmgJaA9DCAtjC0EOihDAlIaUUpRoFUsyaBZHQKbPZ+az/qB1fZQoaAZoCWgPQwjPS8XGvI4JwJSGlFKUaBVLMmgWR0Cm0bA8KXv6dX2UKGgGaAloD0MIbsK9Mm/1FcCUhpRSlGgVSzJoFkdAptFwSnLq2XV9lChoBmgJaA9DCHTPukbLQQHAlIaUUpRoFUsyaBZHQKbRL0nw5Np1fZQoaAZoCWgPQwgNqg1ORN8NwJSGlFKUaBVLMmgWR0Cm0PEWhysCdX2UKGgGaAloD0MIchWL3xS2FMCUhpRSlGgVSzJoFkdAptL9i6QNkXV9lChoBmgJaA9DCAfr/xzmiwzAlIaUUpRoFUsyaBZHQKbSvSa3I+51fZQoaAZoCWgPQwjLhcq/llcGwJSGlFKUaBVLMmgWR0Cm0nuuzQeFdX2UKGgGaAloD0MIcTrJVpeTD8CUhpRSlGgVSzJoFkdAptI8pI+W4XV9lChoBmgJaA9DCLwDPGnhkgfAlIaUUpRoFUsyaBZHQKbT98CPp6h1fZQoaAZoCWgPQwgld9hEZk4JwJSGlFKUaBVLMmgWR0Cm07dlVcUudX2UKGgGaAloD0MISx3k9WACF8CUhpRSlGgVSzJoFkdAptN1mQKa5XV9lChoBmgJaA9DCLw8nStKCRjAlIaUUpRoFUsyaBZHQKbTNp0OmSB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff9c2a46440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9c2a48440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690641892544384978, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAagfQPukKmLoVyBQ/agfQPukKmLoVyBQ/agfQPukKmLoVyBQ/agfQPukKmLoVyBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKAGrv/k8wz8pHcI/lhT4vl30kT8tLxq/vSaNv1UcPT+NjpW/LM0zP5P50T9NUqS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABqB9A+6QqYuhXIFD+QVki84fhau0afHDxqB9A+6QqYuhXIFD+QVki84fhau0afHDxqB9A+6QqYuhXIFD+QVki84fhau0afHDxqB9A+6QqYuhXIFD+QVki84fhau0afHDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40630656 -0.00115999 0.581178 ]\n [ 0.40630656 -0.00115999 0.581178 ]\n [ 0.40630656 -0.00115999 0.581178 ]\n [ 0.40630656 -0.00115999 0.581178 ]]", "desired_goal": "[[-1.3359728 1.5252982 1.5165149 ]\n [-0.48453206 1.1402699 -0.60228235]\n [-1.1027447 0.73871356 -1.1684128 ]\n [ 0.7023494 1.6404289 -0.3209404 ]]", "observation": "[[ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]\n [ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]\n [ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]\n [ 0.40630656 -0.00115999 0.581178 -0.01222767 -0.00334125 0.00955946]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQFjhPCRhED40Q/c8tqnovUxEzL266UM+lLsWPQEXTj3TN8Y9cNhVOhSH4z3rQkk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0275079 0.14099556 0.03018341]\n [-0.11360495 -0.09973964 0.19132128]\n [ 0.03679998 0.05031491 0.09678616]\n [ 0.00081576 0.11109748 0.19654433]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW7Iqwk2G+r+UhpRSlIwBbJRLMowBdJRHQG7Cpdrwe/51fZQoaAZoCWgPQwhJ88e0Ns3yv5SGlFKUaBVLMmgWR0BuvopvxYq5dX2UKGgGaAloD0MIEtkHWRaM+7+UhpRSlGgVSzJoFkdAbrqXP7el9HV9lChoBmgJaA9DCPGcLSC0nva/lIaUUpRoFUsyaBZHQG62jnmq5sl1fZQoaAZoCWgPQwi54XfTLbvwv5SGlFKUaBVLMmgWR0Bu2cQiA2AHdX2UKGgGaAloD0MIN+Fembcq9L+UhpRSlGgVSzJoFkdAbtWn5SFXaXV9lChoBmgJaA9DCHehuU4jbfi/lIaUUpRoFUsyaBZHQG7Rs/QjUut1fZQoaAZoCWgPQwgGvqJbryn3v5SGlFKUaBVLMmgWR0BuzarBCUosdX2UKGgGaAloD0MIvHfUmBDz/L+UhpRSlGgVSzJoFkdAbvKKneizs3V9lChoBmgJaA9DCAZINIEiVvW/lIaUUpRoFUsyaBZHQG7ubkwN9Yx1fZQoaAZoCWgPQwhwlLw6x0D8v5SGlFKUaBVLMmgWR0Bu6oXbdrO8dX2UKGgGaAloD0MIVTNrKSDt9L+UhpRSlGgVSzJoFkdAbuZ+mWMS9XV9lChoBmgJaA9DCLSR66aUV/S/lIaUUpRoFUsyaBZHQG8Ci7TUiIN1fZQoaAZoCWgPQwhaY9AJoYP0v5SGlFKUaBVLMmgWR0Bu/mmDUVi4dX2UKGgGaAloD0MI/psXJ74a97+UhpRSlGgVSzJoFkdAbvpyKekHlnV9lChoBmgJaA9DCOuNWmH6Hvm/lIaUUpRoFUsyaBZHQG72ZPuXu3N1fZQoaAZoCWgPQwhq9kArMKT2v5SGlFKUaBVLMmgWR0BvEcdeY2KmdX2UKGgGaAloD0MI9UwvMZZp8b+UhpRSlGgVSzJoFkdAbw2o/iYLLXV9lChoBmgJaA9DCPDd5o2TgvW/lIaUUpRoFUsyaBZHQG8Jrqlgtvp1fZQoaAZoCWgPQwj6uaEpO730v5SGlFKUaBVLMmgWR0BvBZ5iVjZtdX2UKGgGaAloD0MIy03U0txK+r+UhpRSlGgVSzJoFkdAbyK9nscABHV9lChoBmgJaA9DCEeRtYZS+/m/lIaUUpRoFUsyaBZHQG8eoWpIczZ1fZQoaAZoCWgPQwiXcr7Ye/H2v5SGlFKUaBVLMmgWR0BvGq/j81n/dX2UKGgGaAloD0MIGan3VE7797+UhpRSlGgVSzJoFkdAbxaf/WDpT3V9lChoBmgJaA9DCK+Xpghw+vS/lIaUUpRoFUsyaBZHQG8ycKgIyCZ1fZQoaAZoCWgPQwilLa7xmez7v5SGlFKUaBVLMmgWR0BvLk5EMLF5dX2UKGgGaAloD0MIspsZ/Wi48b+UhpRSlGgVSzJoFkdAbypWilBQenV9lChoBmgJaA9DCBgK2A5GbPe/lIaUUpRoFUsyaBZHQG8mRq46Oo51fZQoaAZoCWgPQwgysI7jh8ryv5SGlFKUaBVLMmgWR0BvQWeBg/kedX2UKGgGaAloD0MI/TBCeLRx9r+UhpRSlGgVSzJoFkdAbz1Cx/ustHV9lChoBmgJaA9DCCFblq/LsPO/lIaUUpRoFUsyaBZHQG85UUoKD011fZQoaAZoCWgPQwiUMNP2r6zyv5SGlFKUaBVLMmgWR0BvNU/pt78fdX2UKGgGaAloD0MIeuHOhZFe8b+UhpRSlGgVSzJoFkdAb1CNVBD5TXV9lChoBmgJaA9DCE91yM1wQ/a/lIaUUpRoFUsyaBZHQG9MZ5iVjZt1fZQoaAZoCWgPQwj9+EuL+uT4v5SGlFKUaBVLMmgWR0BvSGueSSvDdX2UKGgGaAloD0MIGmzqPCp+8r+UhpRSlGgVSzJoFkdAb0RcTrVvuXV9lChoBmgJaA9DCC7nUlxVtvO/lIaUUpRoFUsyaBZHQG9fcVYZEUl1fZQoaAZoCWgPQwj3r6w0KQX3v5SGlFKUaBVLMmgWR0BvW07CBPKudX2UKGgGaAloD0MIinPU0XF19L+UhpRSlGgVSzJoFkdAb1dX7Lt/nXV9lChoBmgJaA9DCOeNk8K8R/S/lIaUUpRoFUsyaBZHQG9TRrJr+Hd1fZQoaAZoCWgPQwhANPPkmsL2v5SGlFKUaBVLMmgWR0BvbwoCuEEldX2UKGgGaAloD0MI1PIDV3kC9r+UhpRSlGgVSzJoFkdAb2ruiN83M3V9lChoBmgJaA9DCDICKhxBavS/lIaUUpRoFUsyaBZHQG9m832mHgx1fZQoaAZoCWgPQwjequtQTQn3v5SGlFKUaBVLMmgWR0BvYuJm/WUbdX2UKGgGaAloD0MI9YO6SKFs97+UhpRSlGgVSzJoFkdAb32lLvkRz3V9lChoBmgJaA9DCExSmWIOQva/lIaUUpRoFUsyaBZHQG95icG1QZZ1fZQoaAZoCWgPQwjZJaq3Bnb1v5SGlFKUaBVLMmgWR0BvdZQWN3nqdX2UKGgGaAloD0MIWoC21azz/L+UhpRSlGgVSzJoFkdAb3GEal1r7HV9lChoBmgJaA9DCHWsUnqmV/e/lIaUUpRoFUsyaBZHQG+NEE9t/F11fZQoaAZoCWgPQwgPZD21+irzv5SGlFKUaBVLMmgWR0BviOq94/u9dX2UKGgGaAloD0MIHXOesS9Z+r+UhpRSlGgVSzJoFkdAb4TvoePq93V9lChoBmgJaA9DCFuwVBfwsvi/lIaUUpRoFUsyaBZHQG+A3cYZVGV1fZQoaAZoCWgPQwiAgosVNVj7v5SGlFKUaBVLMmgWR0Bvm/j4pMHsdX2UKGgGaAloD0MI3GeVmdL687+UhpRSlGgVSzJoFkdAb5fSZ0CA+nV9lChoBmgJaA9DCJMZbyu9tva/lIaUUpRoFUsyaBZHQG+T2pZOi351fZQoaAZoCWgPQwjxR1Fn7mHzv5SGlFKUaBVLMmgWR0Bvj8r7O3UhdX2UKGgGaAloD0MI2lcepKeI+b+UhpRSlGgVSzJoFkdAb6xYVZcLSnV9lChoBmgJaA9DCK01lNqL6PO/lIaUUpRoFUsyaBZHQG+oNOmBOHp1fZQoaAZoCWgPQwjIXBlUG1z2v5SGlFKUaBVLMmgWR0BvpEFKTSssdX2UKGgGaAloD0MIFeC7zRun+r+UhpRSlGgVSzJoFkdAb6AvbGm1pnV9lChoBmgJaA9DCLag98YQAPu/lIaUUpRoFUsyaBZHQG+7ScslLOB1fZQoaAZoCWgPQwg2rn/XZ072v5SGlFKUaBVLMmgWR0Bvtyfe1rqMdX2UKGgGaAloD0MIJxdjYB2H9L+UhpRSlGgVSzJoFkdAb7M2E0zj3nV9lChoBmgJaA9DCGlTdY9sLva/lIaUUpRoFUsyaBZHQG+vKm8/Uvx1fZQoaAZoCWgPQwiZEkn0Mor6v5SGlFKUaBVLMmgWR0Bvys/GEPDpdX2UKGgGaAloD0MI34juWdeo87+UhpRSlGgVSzJoFkdAb8atrbg0j3V9lChoBmgJaA9DCN0lcVZEjfG/lIaUUpRoFUsyaBZHQG/CtcOby6N1fZQoaAZoCWgPQwjBi76CNKP5v5SGlFKUaBVLMmgWR0BvvqTINmUXdX2UKGgGaAloD0MInBcnvtoR+L+UhpRSlGgVSzJoFkdAb9sdsBQvYnV9lChoBmgJaA9DCMNGWb+ZmPK/lIaUUpRoFUsyaBZHQG/W+mWMS9N1fZQoaAZoCWgPQwiP+usVFpz1v5SGlFKUaBVLMmgWR0Bv0wAMlTm5dX2UKGgGaAloD0MIgVziyANR9r+UhpRSlGgVSzJoFkdAb87wCr92o3V9lChoBmgJaA9DCP58W7BUl/a/lIaUUpRoFUsyaBZHQG/quU2UB4l1fZQoaAZoCWgPQwhAbOnRVM/1v5SGlFKUaBVLMmgWR0Bv5pQBPsRhdX2UKGgGaAloD0MIs+pztRVbAMCUhpRSlGgVSzJoFkdAb+KZdfLLZHV9lChoBmgJaA9DCMfzGVBvBva/lIaUUpRoFUsyaBZHQG/ehttQ9A51fZQoaAZoCWgPQwhnJhjONYz0v5SGlFKUaBVLMmgWR0Bv+QsTWXkYdX2UKGgGaAloD0MIccyyJ4HN+b+UhpRSlGgVSzJoFkdAb/Tof0VafXV9lChoBmgJaA9DCDPfwU8cgPm/lIaUUpRoFUsyaBZHQG/w7LU1AJN1fZQoaAZoCWgPQwjrUiP0M7X1v5SGlFKUaBVLMmgWR0Bv7Nv/BFd+dX2UKGgGaAloD0MIcCNli6Sd8b+UhpRSlGgVSzJoFkdAcAQWMju8b3V9lChoBmgJaA9DCPEPW3o0lfm/lIaUUpRoFUsyaBZHQHACBfrrxAl1fZQoaAZoCWgPQwisArUYPMz3v5SGlFKUaBVLMmgWR0BwAAhY/3WXdX2UKGgGaAloD0MIVpkprb8l+L+UhpRSlGgVSzJoFkdAb/wB6KLsKXV9lChoBmgJaA9DCO7qVWR0gPS/lIaUUpRoFUsyaBZHQHALDNY8uBd1fZQoaAZoCWgPQwgMA5ZcxaLyv5SGlFKUaBVLMmgWR0BwCPsjVx0ddX2UKGgGaAloD0MISbw8nSuK+L+UhpRSlGgVSzJoFkdAcAb8lolD4XV9lChoBmgJaA9DCOvE5XgFovK/lIaUUpRoFUsyaBZHQHAE85GSZBt1fZQoaAZoCWgPQwjbF9ALd67zv5SGlFKUaBVLMmgWR0BwEqShakhzdX2UKGgGaAloD0MIUS0iismb9L+UhpRSlGgVSzJoFkdAcBCbdadMCnV9lChoBmgJaA9DCCGunL0z2vW/lIaUUpRoFUsyaBZHQHAOpMg2ZRd1fZQoaAZoCWgPQwhHdTqQ9RT2v5SGlFKUaBVLMmgWR0BwDJ44ZMtcdX2UKGgGaAloD0MILlVpi2v89L+UhpRSlGgVSzJoFkdAcBq4iosI3XV9lChoBmgJaA9DCE6aBkXzQPe/lIaUUpRoFUsyaBZHQHAYqh6By0d1fZQoaAZoCWgPQwiXqx+b5If0v5SGlFKUaBVLMmgWR0BwFrD+BH09dX2UKGgGaAloD0MIxJPdzOhH9r+UhpRSlGgVSzJoFkdAcBSsV+I/JXV9lChoBmgJaA9DCHke3J21G/e/lIaUUpRoFUsyaBZHQHAnOiSJTER1fZQoaAZoCWgPQwi0ykxp/a32v5SGlFKUaBVLMmgWR0BwJS4+bExZdX2UKGgGaAloD0MIFxHF5A1w87+UhpRSlGgVSzJoFkdAcCM17IDHO3V9lChoBmgJaA9DCL5qZcIvdfS/lIaUUpRoFUsyaBZHQHAhNWEK3NN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.0518346005468628, "std_reward": 0.18479621734635332, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-29T14:49:42.553661"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5956e77b42951585fa77a0ea3f6b96e00bef84787873d9da7b65927b805ed9b
|
3 |
size 2387
|