|
class SearchMood: |
|
def __init__(self, mood_prompt, prior_init): |
|
self.prior_init = prior_init |
|
self.mood_prompt = mood_prompt |
|
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
self.embeding = lambda mood_prompt, mood_state: (self.model.encode(mood_prompt, convert_to_tensor=True), self.model.encode(mood_state, convert_to_tensor=True)) |
|
self.similar = lambda similarx, similary: util.pytorch_cos_sim(similarx, similary) |
|
self.cx_sample = shelve.open('cx_sample.db')['sample'] |
|
self.database = shelve.open('database.db') |
|
SearchMood.prior_component = torch.tensor([0.,1.]) |
|
self.prior_sample = torch.normal(self.prior_component[0], self.prior_component[1], size=(5,)) |
|
self.sample_losses = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Hierarchical(self, data): |
|
|
|
|
|
|
|
clusters, distances = hierarchical(data, distance='cosine', linkage='complete', return_clusters=True) |
|
|
|
|
|
print(clusters) |
|
|
|
def embedings(self, samplex, sampley): |
|
emb = self.embeding(samplex, sampley) |
|
embHx = self.Hierarchical(emb[0]) |
|
embHy = self.Hierarchical(emb[1]) |
|
similarity = self.similar(embHx, embHy) |
|
|
|
return(similarity) |
|
|
|
|
|
|
|
def mood_dist(self, data_sample=False, mood_prompt=False, search=True): |
|
cx_index = [] |
|
if search == True: |
|
for mood_state in self.cx_sample: |
|
index_sample = [] |
|
max_sample = 0 |
|
index_sample = 0 |
|
for index, mood_prompts in enumerate(self.database['database']): |
|
simemb = self.embedings(mood_state, mood_prompts) |
|
if max_sample < simemb: |
|
max_sample = simemb |
|
index_sample = index |
|
|
|
|
|
cx_index.append((float(index_sample))) |
|
|
|
|
|
else: |
|
cx_index.append(self.embedings(mood_prompt, data_sample)) |
|
|
|
|
|
|
|
return(torch.tensor(cx_index)) |
|
|
|
|
|
|
|
def loss_fn(self): |
|
|
|
for sample in self.prior_sample: |
|
sample = sample.item() |
|
data_sample = self.database['database'][round(sample)] |
|
samp_loss = self.mood_dist(data_sample, self.mood_prompt, search=False) |
|
print(samp_loss) |
|
if samp_loss.item() >= 1.: |
|
print('test') |
|
break |
|
|
|
|
|
|
|
return(torch.tensor([samp_loss*-1])) |
|
|
|
|
|
|
|
def search_compose(self): |
|
for d in range(100): |
|
optimizer = optim.Adagrad((self.prior_component[0], self.prior_component[1])) |
|
optimizer.step(closure=self.loss_fn) |
|
state_dict = optimizer.state_dict() |
|
params = state_dict['param_groups'][0]['params'] |
|
|
|
self.prior_component[0] = params[0] |
|
self.prior_component[1] = params[1] |
|
self.prior_sample = torch.normal(self.prior_component[0], self.prior_component[1], size=(5,)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|