File size: 8,458 Bytes
a951ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- encoding: utf-8 -*-
# File: audio.py
# Description: None


from typing import Iterable, List, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor


class LayerNorm(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        return super().forward(x).type(x.dtype)


class Linear(nn.Linear):
    def forward(self, x: Tensor) -> Tensor:
        return F.linear(
            x,
            self.weight.to(x.dtype),
            None if self.bias is None else self.bias.to(x.dtype),
        )


class Conv1d(nn.Conv1d):
    def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
        return super()._conv_forward(x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype))


def sinusoids(length, channels, max_timescale=10000):
    """Returns sinusoids for positional embedding"""
    assert channels % 2 == 0
    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
    scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
    return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)


class MultiHeadAttention(nn.Module):
    def __init__(self, n_state: int, n_head: int):
        super().__init__()
        self.n_head = n_head
        self.query = Linear(n_state, n_state)
        self.key = Linear(n_state, n_state, bias=False)
        self.value = Linear(n_state, n_state)
        self.out = Linear(n_state, n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
    ):
        q = self.query(x)

        if kv_cache is None or xa is None or self.key not in kv_cache:
            # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
            # otherwise, perform key/value projections for self- or cross-attention as usual.
            k = self.key(x if xa is None else xa)
            v = self.value(x if xa is None else xa)
        else:
            # for cross-attention, calculate keys and values once and reuse in subsequent calls.
            k = kv_cache[self.key]
            v = kv_cache[self.value]

        wv, qk = self.qkv_attention(q, k, v, mask)
        return self.out(wv), qk

    def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
        n_batch, n_ctx, n_state = q.shape
        scale = (n_state // self.n_head) ** -0.25
        q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
        k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
        v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)

        qk = q @ k
        if mask is not None:
            qk += mask

        w = F.softmax(qk, dim=-1).to(q.dtype)
        return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()


class ResidualAttentionBlock(nn.Module):
    def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
        super().__init__()

        self.attn = MultiHeadAttention(n_state, n_head)
        self.attn_ln = LayerNorm(n_state)

        self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
        self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None

        n_mlp = n_state * 4
        self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
        self.mlp_ln = LayerNorm(n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
    ):
        x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
        if self.cross_attn:
            x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
        x = x + self.mlp(self.mlp_ln(x))
        return x


class AudioEncoder(nn.Module):
    def __init__(
        self,
        n_mels: int,
        n_ctx: int,
        n_state: int,
        n_head: int,
        n_layer: int,
        output_dim: int = 512,
        avg_pool: bool = True,
        add_audio_bos_eos_token: bool = True,
        **kwargs,
    ):
        super().__init__()
        self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
        self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
        self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
        )
        self.ln_post = LayerNorm(n_state)

        if avg_pool:
            self.avg_pooler = nn.AvgPool1d(2, stride=2)
        else:
            self.avg_pooler = None
        self.proj = nn.Linear(n_state, output_dim)
        if add_audio_bos_eos_token:
            self.audio_bos_eos_token = nn.Embedding(2, output_dim)
        else:
            self.audio_bos_eos_token = None
        self.output_dim = output_dim
        self.n_head = n_head

    def forward(self, x: Tensor, padding_mask: Tensor = None, audio_lengths: Tensor = None):
        """
        x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
            the mel spectrogram of the audio
        """
        x = x.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
        if audio_lengths is not None:
            input_mel_len = audio_lengths[:, 0] * 2
            max_mel_len_in_batch = input_mel_len.max()
            x = x[:, :, :max_mel_len_in_batch]
        x = F.gelu(self.conv1(x))
        x = F.gelu(self.conv2(x))
        x = x.permute(0, 2, 1)  # B, L, D
        bsz = x.size(0)
        src_len = x.size(1)

        self.input_positional_embedding = self.positional_embedding[:src_len]
        assert (
            x.shape[1:] == self.input_positional_embedding.shape
        ), f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}"
        x = (x + self.input_positional_embedding).to(x.dtype)
        if padding_mask is not None:
            padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
            batch_src_len = padding_mask.size(1)
            x = x[:, :batch_src_len, :]
            padding_mask = padding_mask.view(bsz, -1, batch_src_len)
            padding_mask_ = padding_mask.all(1)
            x[padding_mask_] = 0
            key_padding_mask = (
                padding_mask_.view(bsz, 1, 1, batch_src_len)
                .expand(-1, self.n_head, -1, -1)
                .reshape(bsz, self.n_head, 1, batch_src_len)
            )
            new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype)
            padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf"))

        for block in self.blocks:
            x = block(x, mask=padding_mask)

        if self.avg_pooler:
            x = x.permute(0, 2, 1)
            x = self.avg_pooler(x)
            x = x.permute(0, 2, 1)

        x = self.ln_post(x)
        x = self.proj(x)

        if self.audio_bos_eos_token is not None:
            bos = self.audio_bos_eos_token.weight[0][None, :]
            eos = self.audio_bos_eos_token.weight[1][None, :]
        else:
            bos, eos = None, None
        return x, bos, eos

    def encode(
        self,
        input_audios: Tensor,
        input_audio_lengths: Tensor,
        audio_span_tokens: List,
    ):
        real_input_audio_lens = input_audio_lengths[:, 0].tolist()
        max_len_in_batch = max(real_input_audio_lens)
        padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to(
            dtype=self.conv1.weight.dtype, device=self.conv1.weight.device
        )
        for index in range(len(input_audios)):
            padding_mask[index, : input_audio_lengths[index][0].item()] = 0
        x, bos, eos = self(input_audios, padding_mask, input_audio_lengths)
        output_audios = []
        for i in range(len(audio_span_tokens)):
            audio_span = audio_span_tokens[i]
            audio = x[i][: audio_span - 2]
            if bos is not None:
                audio = torch.concat([bos, audio, eos])
            assert len(audio) == audio_span
            output_audios.append(audio)
        return output_audios