File size: 12,697 Bytes
483b1a4 a951ae0 de89efa a951ae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright 2024 Infinigence AI Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains the implementation of the Megrez-Omni model."""
import torch
from transformers import AutoProcessor
from transformers import LlamaForCausalLM
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings
from .audio import AudioEncoder
from .configuration_megrezo import MegrezOConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .resampler import Resampler
def insert_audio_embeddings(text_embeddings, inserted_embeddings, inserted_bounds):
inserted_bounds = inserted_bounds.long()
for idx in range(len(inserted_embeddings)):
bid = inserted_bounds[idx][0]
start_id = inserted_bounds[idx][1]
end_id = inserted_bounds[idx][2]
embedding = inserted_embeddings[idx]
text_embeddings[bid, start_id + 1 : end_id] = embedding
return text_embeddings
def insert_image_embeddings(text_embeddings, inserted_embeddings, inserted_bounds):
inserted_bounds = inserted_bounds.long()
for idx in range(len(inserted_embeddings)):
bid = inserted_bounds[idx][0]
start_id = inserted_bounds[idx][1]
end_id = inserted_bounds[idx][2]
embedding = inserted_embeddings[idx]
text_embeddings[bid, start_id:end_id] = embedding
return text_embeddings
MegrezO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MegrezOConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare MegrezO Model outputting raw hidden-states without any specific head on top.",
MegrezO_START_DOCSTRING,
)
class MegrezOPreTrainedModel(PreTrainedModel):
base_model_prefix = "model"
supports_gradient_checkpointing = True
config_class = MegrezOConfig
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
class AudioModel(torch.nn.Module):
def __init__(self, config: MegrezOConfig):
super(AudioModel, self).__init__()
self.config = config
self.audio = AudioEncoder(**config.audio_config.to_dict())
def forward(self, audio_info):
audios = audio_info["input_audios"]
input_audio_lengths = audio_info["input_audio_lengths"]
audio_span_tokens = audio_info["audio_span_tokens"]
audios_features = self.audio.encode(audios, input_audio_lengths, audio_span_tokens)
return audios_features
class VisionModel(torch.nn.Module):
def __init__(self, config: MegrezOConfig):
super(VisionModel, self).__init__()
self.config = config
self.vpm = self.init_vision_module()
self.resampler = self.init_resampler(self.config.hidden_size, self.vpm.embed_dim)
def init_vision_module(self):
if self.config._attn_implementation == "flash_attention_2":
self.config.vision_config._attn_implementation = "flash_attention_2"
else:
# not suport sdpa
self.config.vision_config._attn_implementation = "eager"
model = SiglipVisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, "embed_dim", model.embeddings.embed_dim)
setattr(model, "patch_size", model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True,
)
def get_vision_embedding(
self,
all_pixel_values: torch.Tensor,
patch_attention_mask: torch.Tensor,
tgt_sizes: torch.Tensor,
):
B = all_pixel_values.size(0)
vision_batch_size = self.config.vision_batch_size
if B > vision_batch_size:
hs = []
for i in range(0, B, vision_batch_size):
start_idx = i
end_idx = i + vision_batch_size
tmp_hs = self.vpm(
all_pixel_values[start_idx:end_idx],
patch_attention_mask=patch_attention_mask[start_idx:end_idx],
tgt_sizes=tgt_sizes[start_idx:end_idx],
).last_hidden_state
hs.append(tmp_hs)
vision_embedding = torch.cat(hs, dim=0)
else:
vision_embedding = self.vpm(
all_pixel_values,
patch_attention_mask=patch_attention_mask,
tgt_sizes=tgt_sizes,
).last_hidden_state
return vision_embedding
def _prepare_vision_input(self, images, patch_attention_mask, tgt_sizes):
# (TODO) Move to processor
device = self.vpm.device
dtype = self.vpm.dtype
pixel_values = torch.stack([(image.to(device) - 127.5) / 127.5 for image in images]).type(dtype)
patch_attention_mask = patch_attention_mask.to(device)
return pixel_values, patch_attention_mask, tgt_sizes
def forward(self, images, tgt_sizes, patch_attention_mask):
pixel_values, patch_attention_mask, tgt_sizes = self._prepare_vision_input(
images, patch_attention_mask, tgt_sizes
)
embedding = self.get_vision_embedding(pixel_values, patch_attention_mask, tgt_sizes)
embedding = self.resampler(embedding, tgt_sizes)
return embedding
class MegrezO(MegrezOPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = LlamaForCausalLM(config)
self.vision = VisionModel(config)
self.audio = AudioModel(config)
self.post_init()
self.processor = None
# Will be set in the training script
self.tune_vision = False
self.tune_audio = False
def _get_or_init_processor(self):
if self.processor is None:
self.processor = AutoProcessor.from_pretrained(
self.config._name_or_path,
trust_remote_code=True,
)
return self.processor
def convert_to_device(self, mini_batch):
for key in mini_batch:
if isinstance(mini_batch[key], torch.Tensor):
mini_batch[key] = mini_batch[key].to(self.device)
if isinstance(mini_batch[key], list):
return_value = []
for value in mini_batch[key]:
if isinstance(value, torch.Tensor):
value = value.to(self.device)
return_value.append(value)
mini_batch[key] = return_value
return mini_batch
def compose_embeddings(self, mini_batch):
position_ids = mini_batch["position_ids"]
input_ids = mini_batch["input_ids"]
image_encoding = mini_batch.get("image_encoding")
audio_encoding = mini_batch.get("audio_encoding")
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
embeddings_text = self.llm.model.embed_tokens(input_ids)
input_embeds = embeddings_text
if image_encoding:
pixel_values = image_encoding["pixel_values"]
tgt_sizes = image_encoding["tgt_sizes"]
patch_attention_mask = image_encoding["patch_attention_mask"]
bounds_image = image_encoding["image_bounds"]
embeddings_image = self.vision(pixel_values, tgt_sizes, patch_attention_mask=patch_attention_mask)
input_embeds = insert_image_embeddings(embeddings_text, embeddings_image, bounds_image)
elif self.training and self.tune_vision:
pixel_values = torch.zeros((3, 14, 3584), dtype=torch.float32)
tgt_sizes = torch.tensor([[16, 16]], dtype=torch.int64)
patch_attention_mask = torch.ones((3, 14), dtype=torch.float32)
embeddings_image = self.vision(pixel_values, tgt_sizes, patch_attention_mask=patch_attention_mask)
input_embeds += embeddings_image[0].sum() * 0.0
if audio_encoding:
embeddings_audio = self.audio(audio_encoding)
bounds_audio = audio_encoding["audio_bounds"]
input_embeds = insert_audio_embeddings(embeddings_text, embeddings_audio, bounds_audio)
elif self.training and self.tune_audio:
dummy_audio = torch.zeros((1, 128, 3000), dtype=torch.float32)
dummy_audio_lengths = torch.tensor([[125, 62]], dtype=torch.int32)
dummy_span_tokens = [64]
dummy_audio_encoding = [
{
"input_audios": dummy_audio,
"input_audio_lengths": dummy_audio_lengths,
"audio_span_tokens": dummy_span_tokens,
}
]
embeddings_audio = self.audio(dummy_audio_encoding)
input_embeds += embeddings_audio[0].sum() * 0.0
return input_ids, input_embeds, position_ids
def forward(self, data, **kwargs):
if self.training:
_, input_embeds, position_ids = self.compose_embeddings(data)
return self.llm.forward(
input_ids=None,
position_ids=position_ids,
inputs_embeds=input_embeds,
**kwargs,
)
return self.llm.forward(**kwargs)
def generate(
self,
input_ids,
position_ids,
attention_mask,
image_encoding=None,
audio_encoding=None,
**kwargs,
):
tokenizer = self._get_or_init_processor().tokenizer
data = {
"input_ids": input_ids,
"position_ids": position_ids,
"attention_mask": attention_mask,
"image_encoding": image_encoding,
"audio_encoding": audio_encoding,
}
data = self.convert_to_device(data)
input_ids, input_embeds, position_ids = self.compose_embeddings(data)
output = self.llm.generate(
inputs_embeds=input_embeds,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
**kwargs,
)
return output
def trim_stop_words(self, response, stop_words):
if stop_words:
for stop in stop_words:
idx = response.find(stop)
if idx != -1:
response = response[:idx]
return response
@torch.inference_mode()
def chat(self, input_msgs, processor=None, sampling=False, **kwargs):
if processor is None:
processor = self._get_or_init_processor()
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config.update(kwargs)
if generation_config.get("temperature") == 0:
generation_config["do_sample"] = False
data = processor(input_msgs)
output_ids = self.generate(**data, **generation_config)
tokenizer = processor.tokenizer
answer = tokenizer.decode(output_ids[0])
return answer
|