File size: 22,424 Bytes
483b1a4
 
 
 
 
 
 
 
 
 
 
 
 
a951ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# Copyright 2024 Infinigence AI Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import io
import re
import subprocess
from collections import UserDict
from typing import List, Literal, Optional, Tuple, Union

import numpy as np
import PIL
import PIL.Image
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import TensorType
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin

from .image_processing_megrezo import MegrezOImageProcessor  # noqa: F401

AudioInput = Union[str, bytes, "np.ndarray", List[str], List[bytes], List["np.ndarray"]]
ReturnTensorType = Union[str, TensorType]


class ImageBatchFeature(BatchFeature):
    r"""
    Holds the image features of a batch of images.
    """

    pixel_values: Union[np.ndarray, torch.Tensor]
    image_sizes: Union[np.ndarray, torch.Tensor]
    tgt_sizes: Union[np.ndarray, torch.Tensor]
    patch_attention_mask: Union[np.ndarray, torch.Tensor]
    image_bounds: Union[np.ndarray, torch.Tensor]


class AudioBatchFeature(BatchFeature):
    r"""
    Holds the audio features of a batch of audio.
    """

    input_audios: List[Union[np.ndarray, torch.Tensor]]
    input_audio_lengths: List[Union[np.ndarray, torch.Tensor]]
    audio_span_tokens: List[Union[np.ndarray, torch.Tensor]]
    audio_bounds: Union[np.ndarray, torch.Tensor]


class ConvContent(UserDict):
    text: Optional[str] = None
    image: Optional[ImageInput] = None
    audio: Optional[Union[str, bytes, List[Union[str, bytes]]]] = None


class Conversation(UserDict):
    role: Literal["user", "assistant"]
    content: Union[str, dict, ConvContent]


def load_audio(
    audio: Union[str, bytes],
    sample_rate: int = 16000,
) -> "np.ndarray":
    """Load audio from a file path or bytes and return as a numpy array.

    Args:
        audio (Union[str, bytes]): path to a audio file or audio bytes.
        sample_rate (int, optional): sample rate. Defaults to 16000.

    Raises:
        ValueError: if the input audio is neither a path nor bytes.

    Returns:
        np.ndarray: the audio as a numpy array.
    """
    if isinstance(audio, str):
        inp = audio
        out = "-"
        cmd_inp = None
    elif isinstance(audio, bytes):
        inp = "pipe:"
        out = "pipe:"
        cmd_inp = audio
    else:
        raise ValueError("input audio must be either a path or bytes")

    cmd = [
        "ffmpeg",
        "-nostdin",
        "-threads",
        "0",
        "-i",
        inp,
        "-f",
        "s16le",
        "-ac",
        "1",
        "-acodec",
        "pcm_s16le",
        "-ar",
        str(sample_rate),
        out,
    ]

    out = subprocess.check_output(cmd, input=cmd_inp, stderr=subprocess.PIPE)
    arr = np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
    return arr


def load_image(
    image: Union[str, bytes, PIL.Image.Image],
) -> PIL.Image.Image:
    """Load image from a file path or bytes and return as a PIL image.

    Args:
        image (Union[str, bytes, PIL.Image.Image]): path to an image file, image bytes or a PIL image.

    Raises:
        ValueError: if the input image is neither a path nor bytes.

    Returns:
        PIL.Image.Image: the image as a PIL image.
    """
    if isinstance(image, PIL.Image.Image):
        return image

    if isinstance(image, str):
        img = PIL.Image.open(image)
    elif isinstance(image, bytes):
        img = PIL.Image.open(io.BytesIO(image))
    else:
        raise ValueError("input image must be either a path or bytes")

    return img


class MegrezOProcessor(ProcessorMixin):
    attributes = ["image_processor", "audio_feature_extractor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    audio_feature_extractor_class = "WhisperFeatureExtractor"
    tokenizer_class = "AutoTokenizer"

    _image_placeholder = r"(<image>./</image>)"
    _audio_placeholder = r"(<audio>./</audio>)"

    def __init__(self, image_processor=None, audio_feature_extractor=None, tokenizer=None):
        super().__init__(image_processor, audio_feature_extractor, tokenizer)
        self.chat_template = self.tokenizer.chat_template

    def _parse_and_check_inputs(self, inputs) -> List[Conversation]:
        if not isinstance(inputs, list):
            raise ValueError("inputs must be a list of conversations")

        conversations = []
        images = []
        audios = []

        for input in inputs:
            if not isinstance(input, dict) and not isinstance(input, Conversation):
                raise ValueError("each element of inputs must be a dictionary or a Conversation object")

            role = input.get("role")
            content = input.get("content")
            if role is None or content is None:
                raise ValueError("role and content must be provided in each conversation")

            if isinstance(content, str):
                content = content
            elif isinstance(content, dict):
                content = ConvContent({**content})
            elif not isinstance(content, ConvContent):
                raise ValueError("content must be a dictionary or a ConvContent object")

            if not isinstance(content, str):
                if content.get("image") is not None:
                    images.extend(content["image"] if isinstance(content["image"], list) else [content["image"]])

                if content.get("audio") is not None:
                    audios.extend(content["audio"] if isinstance(content["audio"], list) else [content["audio"]])

            conv = Conversation({"role": role, "content": content})
            conversations.append(conv)

        return conversations, images, audios

    def __call__(
        self,
        conversations: List[Conversation],
        apply_chat_template: bool = True,
        max_length: Optional[int] = None,
        return_tensors: ReturnTensorType = TensorType.PYTORCH,
        apply_data_collator: bool = True,
        **kwargs,
    ):
        assert return_tensors is TensorType.PYTORCH, "Only PyTorch tensors are supported for now."
        convs, images, audios = self._parse_and_check_inputs(conversations)
        add_generation_prompt = kwargs.pop("add_generation_prompt", True)
        if apply_chat_template:
            prompt = self.tokenizer.apply_chat_template(
                convs,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
            )
        else:  # (TODO) For clarification temporarily. Check whether this needs to be removed.
            prompt = "\n".join([conv["content"] for conv in convs])

        prompt, multimodal_inputs = self.process_multimodal_inputs(
            prompt,
            images=images,
            audios=audios,
            return_tensors=return_tensors,
            **kwargs,
        )
        text_encodings = self.tokenizer(
            prompt,
            return_tensors=return_tensors,
            max_length=max_length,
            padding=True,
            padding_side="left",
            truncation=True,
            **kwargs,
        )

        merged = self.merge_encodings(text_encodings, multimodal_inputs)

        if apply_data_collator:
            return self.data_collator([merged])

        return merged

    def merge_encodings(self, text_encodings, multimodal_inputs):

        result = {
            "image_encoding": None,
            "audio_encoding": None,
        }

        result["input_ids"] = text_encodings["input_ids"].reshape(-1).to(torch.int32)
        result["attention_mask"] = result["input_ids"].ne(0)
        result["position_ids"] = torch.arange(result["input_ids"].size(0)).long()

        if "image_encoding" in multimodal_inputs and multimodal_inputs["image_encoding"]:
            result["image_encoding"] = multimodal_inputs["image_encoding"]
            result["image_encoding"]["image_bounds"] = self.compute_bounds_image(result["input_ids"])

        if "audio_encoding" in multimodal_inputs and multimodal_inputs["audio_encoding"]:
            result["audio_encoding"] = multimodal_inputs["audio_encoding"]
            result["audio_encoding"]["audio_bounds"] = self.compute_bounds_audio(result["input_ids"])

        return result

    def compute_bounds_image(self, input_ids: torch.Tensor) -> List[torch.Tensor]:
        image_start_ids = (
            torch.where((input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id))[0] + 1
        )
        image_end_ids = torch.where(
            (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
        )[0]

        valid_image_nums = max(len(image_start_ids), len(image_end_ids))
        bounds_image = torch.hstack(
            [
                image_start_ids[:valid_image_nums].unsqueeze(-1),
                image_end_ids[:valid_image_nums].unsqueeze(-1),
            ]
        )
        return bounds_image

    def compute_bounds_audio(self, input_ids: torch.Tensor) -> torch.Tensor:
        audio_bos_ids = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
        audio_eos_ids = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
        bounds_audio = torch.stack([audio_bos_ids, audio_eos_ids], 1)
        return bounds_audio

    def process_multimodal_inputs(
        self,
        text: str,
        images: Optional[ImageInput] = None,
        audios: Optional[Union[str, bytes, List[Union[str, bytes]]]] = None,
        return_tensors: ReturnTensorType = TensorType.PYTORCH,
        **kwargs,
    ):
        # (NOTE) Only single pair of multimodal input is allowed currently.
        # (TODO) Check whether single multimodal input is allowed.
        if text is None and images is None and audios is None:
            raise ValueError("At least one of text, images or audio must be provided")

        image_processor_kwargs, audio_feature_extractor_kwargs = {}, {}
        if kwargs:
            image_processor_kwargs = {
                k: v for k, v in kwargs.items() if k in self.image_processor._valid_processor_keys
            }
            audio_feature_extractor_kwargs = {
                k: v for k, v in kwargs.items() if k in self.audio_feature_extractor._valid_processor_keys
            }

        multimodal_encodings = {
            "image_encoding": None,
            "audio_encoding": None,
        }

        if images:
            image_encoding = self.process_image(
                images,
                return_tensors=return_tensors,
                **image_processor_kwargs,
            )
            text = self.insert_image_feature_placeholders(text, image_encoding)
            multimodal_encodings["image_encoding"] = image_encoding

        if audios:
            audio_encoding = self.process_audio(
                audios,
                **audio_feature_extractor_kwargs,
            )
            text = self.insert_audio_feature_placeholders(text, audio_encoding)
            multimodal_encodings["audio_encoding"] = audio_encoding

        return text, multimodal_encodings

    def insert_image_feature_placeholders(
        self,
        prompt: str,
        image_features: ImageBatchFeature,
        max_slice_nums: Optional[int] = None,
        use_image_id: Optional[bool] = None,
    ) -> List[str]:
        # Check the number of image tags and the number of images.
        img_tags = re.findall(self._image_placeholder, prompt)
        assert len(img_tags) == len(
            image_features.image_sizes
        ), f"the number of image tags must match the number of images, got {len(img_tags)} and {len(image_features.image_sizes)}"

        # Replace image tags with image placeholders.
        text_chunks = prompt.split(self._image_placeholder)
        final_text = ""
        for i in range(len(img_tags)):
            final_text += text_chunks[i] + self.image_processor.get_slice_image_placeholder(
                image_features.image_sizes[i],
                i,
                max_slice_nums,
                use_image_id,
            )
        final_text += text_chunks[-1]

        return final_text

    def insert_audio_feature_placeholders(
        self,
        prompt: str,
        audio_features: AudioBatchFeature,
    ) -> List[str]:
        # Check the number of audio tags and the number of audios.
        audio_tags = re.findall(self._audio_placeholder, prompt)
        assert len(audio_tags) == len(
            audio_features.input_audios
        ), "the number of audio tags must match the number of audios"

        # Replace audio tags with audio placeholders.
        text_chunks = prompt.split(self._audio_placeholder)
        final_text = ""
        for idx in range(len(audio_features.input_audios)):
            final_text += text_chunks[idx] + (
                self.tokenizer.audio_start
                + self.tokenizer.unk_token * audio_features.audio_span_tokens[idx]
                + self.tokenizer.audio_end
            )
        final_text += text_chunks[-1]

        return final_text

    def process_audio(
        self,
        audio_input: AudioInput,
        return_tensors: ReturnTensorType = TensorType.PYTORCH,
        **kwargs,
    ) -> AudioBatchFeature:
        if isinstance(audio_input, list):
            inputs = [load_audio(x) for x in audio_input]
        elif isinstance(audio_input, (str, bytes, "np.ndarray")):
            inputs = [load_audio(audio_input)]
        else:
            raise ValueError("audio_input must be a path or bytes or a list of paths/bytes")

        features = self.audio_feature_extractor(
            inputs,
            sampling_rate=self.audio_feature_extractor.sampling_rate,
            return_attention_mask=True,
            return_token_timestamps=True,
            padding="max_length",
            return_tensors=return_tensors,
            **kwargs,
        )

        input_lengths = features["num_frames"]
        input_lengths = (input_lengths - 1) // 2 + 1
        output_lengths = (input_lengths - 2) // 2 + 1
        input_audio_lengths = torch.stack([input_lengths, output_lengths], dim=1)
        audio_span_tokens = (output_lengths + 2).tolist()  # add bos and eos tokens

        data = {
            "input_audios": features["input_features"],
            "input_audio_lengths": input_audio_lengths,
            "audio_span_tokens": audio_span_tokens,
        }

        # tensor types are already converted in `self.audio_feature_extractor`.
        return AudioBatchFeature(data={**data})

    def pad_images(
        self,
        pixel_values_list: List[torch.Tensor],
        tgt_sizes: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Pad images to the same size and return the padded pixel values and patch attention mask.

        Sliced pataches may have different sizes. We pad them to the same size and return the padded pixel values and corresponding patch attention mask.
        """

        all_pixel_values = []
        for pixel_value in pixel_values_list:
            all_pixel_values.append(pixel_value.flatten(end_dim=1).permute(1, 0))

        max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
        all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, padding_value=0.0)
        B, L, _ = all_pixel_values.shape
        all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)

        patch_attention_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool)
        for i in range(B):
            patch_attention_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True

        return all_pixel_values, patch_attention_mask

    def process_image(
        self,
        image_input: ImageInput,
        do_pad: bool = True,
        max_slice_nums: Optional[int] = None,
        return_tensors: ReturnTensorType = TensorType.PYTORCH,
        **kwargs,
    ) -> ImageBatchFeature:
        if isinstance(image_input, list):
            image_input = [load_image(x) for x in image_input]
        elif isinstance(image_input, (str, bytes, PIL.Image.Image)):
            image_input = [load_image(image_input)]
        else:
            raise ValueError(f"image_input must be a path or bytes or a list of paths/bytes, not: {type(image_input)}")

        image_features = self.image_processor(
            image_input,
            do_pad=do_pad,
            max_slice_nums=max_slice_nums,
            return_tensors=return_tensors,
            **kwargs,
        )

        # Multiple images are packed into first element of the list. We unpack them here.
        assert len(image_features.pixel_values) == 1, "images should be packed into one list."
        pixel_values = image_features.pixel_values[0]
        tgt_sizes = image_features.tgt_sizes[0]
        image_sizes = image_features.image_sizes[0]

        pixel_values, patch_attention_mask = self.pad_images(pixel_values, tgt_sizes)

        data = {
            "pixel_values": pixel_values,
            "image_sizes": image_sizes,
            "tgt_sizes": tgt_sizes,
            "patch_attention_mask": patch_attention_mask,
        }

        # tensor types are already converted in `self.image_processor`.
        return ImageBatchFeature(data=data)

    def data_collator(self, examples, padding_value=0, max_length=4096, collate_labels=False):
        """Collate data for MegrezO model.

        Batch data for MegrezO model. This function trims and pads the input_ids, position_ids, and attention_mask tensors. For bounds tensors, it adds batch index to the bounds.
        """
        # (TODO) Remove this function?

        def trim_and_pad(seq, batch_first, padding_value):
            return pad_sequence(
                [s[:max_length] for s in seq],
                batch_first=True,
                padding_value=padding_value,
            )

        input_ids = trim_and_pad(
            [example["input_ids"] for example in examples],
            batch_first=True,
            padding_value=padding_value,
        )
        position_ids = trim_and_pad(
            [example["position_ids"] for example in examples],
            batch_first=True,
            padding_value=padding_value,
        )

        attention_mask = trim_and_pad(
            [example["attention_mask"] for example in examples],
            batch_first=True,
            padding_value=padding_value,
        )

        image_encoding_list = {
            "pixel_values": [],
            "image_bounds": [],
            "tgt_sizes": [],
            "patch_attention_mask": [],
        }
        for bid, example in enumerate(examples):
            image_encoding = example.get("image_encoding")
            if not image_encoding:
                continue

            image_encoding_list["pixel_values"].append(image_encoding["pixel_values"])
            image_encoding_list["tgt_sizes"].append(image_encoding["tgt_sizes"])
            image_encoding_list["patch_attention_mask"].append(image_encoding["patch_attention_mask"])

            # (TODO) Remove?
            # add batch index to bounds (bid, start, end)
            bounds_with_bid = image_encoding["image_bounds"].clone()
            bounds_with_bid = torch.hstack(
                [
                    torch.full((bounds_with_bid.size(0), 1), bid, dtype=bounds_with_bid.dtype),
                    bounds_with_bid,
                ]
            )
            image_encoding_list["image_bounds"].append(bounds_with_bid)

        audio_encoding_list = {
            "input_audios": [],
            "input_audio_lengths": [],
            "audio_span_tokens": [],
            "audio_bounds": [],
        }
        for bid, example in enumerate(examples):
            audio_encoding = example.get("audio_encoding")
            if not audio_encoding:
                continue

            audio_encoding_list["input_audios"].append(audio_encoding["input_audios"])
            audio_encoding_list["input_audio_lengths"].append(audio_encoding["input_audio_lengths"])
            audio_encoding_list["audio_span_tokens"].extend(audio_encoding["audio_span_tokens"])
            bounds_with_bid = audio_encoding["audio_bounds"].clone()
            bounds_with_bid = torch.hstack(
                [
                    torch.full((bounds_with_bid.size(0), 1), bid, dtype=bounds_with_bid.dtype),
                    bounds_with_bid,
                ]
            )
            audio_encoding_list["audio_bounds"].append(bounds_with_bid)

        result = {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "image_encoding": None,
            "audio_encoding": None,
        }

        if collate_labels:
            labels = trim_and_pad(
                [example["labels"] for example in examples],
                batch_first=True,
                padding_value=-100,
            )
            result["labels"] = labels

        if any(image_encoding_list.values()):
            result["image_encoding"] = {
                "pixel_values": torch.vstack(image_encoding_list["pixel_values"]),
                "tgt_sizes": torch.vstack(image_encoding_list["tgt_sizes"]),
                "patch_attention_mask": torch.vstack(image_encoding_list["patch_attention_mask"]),
                "image_bounds": torch.vstack(image_encoding_list["image_bounds"]),
            }
        if any(audio_encoding_list.values()):
            result["audio_encoding"] = {
                "input_audios": torch.vstack(audio_encoding_list["input_audios"]),
                "input_audio_lengths": torch.vstack(audio_encoding_list["input_audio_lengths"]),
                "audio_span_tokens": audio_encoding_list["audio_span_tokens"],
                "audio_bounds": torch.vstack(audio_encoding_list["audio_bounds"]),
            }
        return result