blancsw commited on
Commit
11952b1
·
verified ·
1 Parent(s): 38635c1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +120 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ {}
3
+ ---
4
+ ---
5
+ license: apache-2.0
6
+ pipeline_tag: translation
7
+ base_model: Helsinki-NLP/opus-mt-en-de
8
+ language:
9
+ - en
10
+ - de
11
+ tags:
12
+ - translation
13
+ - onnx
14
+ ---
15
+
16
+ ### opus-mt-en-de
17
+
18
+
19
+ ## Table of Contents
20
+ - [Model Details](#model-details)
21
+ - [Uses](#uses)
22
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
23
+ - [Training](#training)
24
+ - [Evaluation](#evaluation)
25
+ - [Citation Information](#citation-information)
26
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
27
+
28
+ ## Model Details
29
+ **Model Description:**
30
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
31
+ - **Model Type:** Translation
32
+ - **Language(s):**
33
+ - Source Language: English
34
+ - Target Language: German
35
+ - **License:** CC-BY-4.0
36
+ - **Resources for more information:**
37
+ - [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
38
+
39
+
40
+ ## Uses
41
+
42
+ #### Direct Use
43
+
44
+ This model can be used for translation and text-to-text generation.
45
+
46
+
47
+ ## Risks, Limitations and Biases
48
+
49
+
50
+
51
+ **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
52
+
53
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
54
+
55
+ Further details about the dataset for this model can be found in the OPUS readme: [en-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-de/README.md)
56
+
57
+
58
+ #### Training Data
59
+ ##### Preprocessing
60
+ * pre-processing: normalization + SentencePiece
61
+
62
+ * dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT)
63
+ * download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.zip)
64
+
65
+ * test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.test.txt)
66
+
67
+ ## Evaluation
68
+
69
+ #### Results
70
+
71
+ * test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.eval.txt)
72
+
73
+
74
+ #### Benchmarks
75
+
76
+ | testset | BLEU | chr-F |
77
+ |-----------------------|-------|-------|
78
+ | newssyscomb2009.en.de | 23.5 | 0.540 |
79
+ | news-test2008.en.de | 23.5 | 0.529 |
80
+ | newstest2009.en.de | 22.3 | 0.530 |
81
+ | newstest2010.en.de | 24.9 | 0.544 |
82
+ | newstest2011.en.de | 22.5 | 0.524 |
83
+ | newstest2012.en.de | 23.0 | 0.525 |
84
+ | newstest2013.en.de | 26.9 | 0.553 |
85
+ | newstest2015-ende.en.de | 31.1 | 0.594 |
86
+ | newstest2016-ende.en.de | 37.0 | 0.636 |
87
+ | newstest2017-ende.en.de | 29.9 | 0.586 |
88
+ | newstest2018-ende.en.de | 45.2 | 0.690 |
89
+ | newstest2019-ende.en.de | 40.9 | 0.654 |
90
+ | Tatoeba.en.de | 47.3 | 0.664 |
91
+
92
+
93
+
94
+ ## Citation Information
95
+
96
+ ```bibtex
97
+ @InProceedings{TiedemannThottingal:EAMT2020,
98
+ author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
99
+ title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
100
+ booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
101
+ year = {2020},
102
+ address = {Lisbon, Portugal}
103
+ }
104
+ ```
105
+
106
+ ## How to Get Started With the Model
107
+ ```python
108
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
109
+
110
+ tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
111
+
112
+ model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de")
113
+
114
+ ```
115
+
116
+
117
+
118
+
119
+
120
+