--- base_model: Helsinki-NLP/opus-mt-en-de language: - en - de license: apache-2.0 pipeline_tag: translation tags: - translation - onnx --- ### opus-mt-en-de ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation - **Language(s):** - Source Language: English - Target Language: German - **License:** CC-BY-4.0 - **Resources for more information:** - [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Uses #### Direct Use This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Further details about the dataset for this model can be found in the OPUS readme: [en-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-de/README.md) #### Training Data ##### Preprocessing * pre-processing: normalization + SentencePiece * dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT) * download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.zip) * test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.test.txt) ## Evaluation #### Results * test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.eval.txt) #### Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009.en.de | 23.5 | 0.540 | | news-test2008.en.de | 23.5 | 0.529 | | newstest2009.en.de | 22.3 | 0.530 | | newstest2010.en.de | 24.9 | 0.544 | | newstest2011.en.de | 22.5 | 0.524 | | newstest2012.en.de | 23.0 | 0.525 | | newstest2013.en.de | 26.9 | 0.553 | | newstest2015-ende.en.de | 31.1 | 0.594 | | newstest2016-ende.en.de | 37.0 | 0.636 | | newstest2017-ende.en.de | 29.9 | 0.586 | | newstest2018-ende.en.de | 45.2 | 0.690 | | newstest2019-ende.en.de | 40.9 | 0.654 | | Tatoeba.en.de | 47.3 | 0.664 | ## Citation Information ```bibtex @InProceedings{TiedemannThottingal:EAMT2020, author = {J{\"o}rg Tiedemann and Santhosh Thottingal}, title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld}, booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)}, year = {2020}, address = {Lisbon, Portugal} } ``` ## How to Get Started With the Model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de") ```