hdallatorre
commited on
Upload SegmentNT
Browse files- config.json +1 -1
- modeling_segment_nt.py +29 -27
- pytorch_model.bin +2 -2
config.json
CHANGED
@@ -40,7 +40,7 @@
|
|
40 |
"num_layers_head": 2,
|
41 |
"pad_token_id": 1,
|
42 |
"position_embedding_type": "rotary",
|
43 |
-
"rescaling_factor":
|
44 |
"tie_word_embeddings": false,
|
45 |
"token_dropout": false,
|
46 |
"torch_dtype": "float32",
|
|
|
40 |
"num_layers_head": 2,
|
41 |
"pad_token_id": 1,
|
42 |
"position_embedding_type": "rotary",
|
43 |
+
"rescaling_factor": 2.44140625,
|
44 |
"tie_word_embeddings": false,
|
45 |
"token_dropout": false,
|
46 |
"torch_dtype": "float32",
|
modeling_segment_nt.py
CHANGED
@@ -115,56 +115,58 @@ class RotaryEmbedding(torch.nn.Module):
|
|
115 |
super().__init__()
|
116 |
|
117 |
# Extract argument from the config
|
118 |
-
rescaling_factor = rotary_embedding_config.rescaling_factor
|
119 |
-
upper_freq = 10000
|
120 |
-
|
121 |
-
if rescaling_factor is None:
|
122 |
-
inv_freq = 1.0 / (upper_freq ** (torch.arange(0, dim, 2).float() / dim))
|
123 |
-
else:
|
124 |
-
updated_base = upper_freq * (
|
125 |
-
rescaling_factor ** (dim / (dim - 2))
|
126 |
-
)
|
127 |
-
inv_freq = 1.0 / (
|
128 |
-
updated_base ** (torch.arange(0, dim, 2).float() / dim)
|
129 |
-
)
|
130 |
-
|
131 |
-
self.register_buffer("inv_freq", inv_freq)
|
132 |
|
133 |
self._seq_len_cached = None
|
134 |
self._cos_cached = None
|
135 |
self._sin_cached = None
|
136 |
|
137 |
-
|
|
|
|
|
138 |
seq_len = x.shape[seq_dimension]
|
139 |
|
140 |
# Reset the tables if the sequence length has changed,
|
141 |
# or if we're on a new device (possibly due to tracing for instance)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
|
153 |
return self._cos_cached, self._sin_cached
|
154 |
|
155 |
def forward(
|
156 |
self, q: torch.Tensor, k: torch.Tensor
|
157 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
|
|
|
|
|
|
|
|
162 |
return (
|
163 |
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
164 |
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
165 |
)
|
166 |
|
167 |
|
|
|
168 |
class EsmContactPredictionHead(nn.Module):
|
169 |
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
170 |
|
|
|
115 |
super().__init__()
|
116 |
|
117 |
# Extract argument from the config
|
118 |
+
self.rescaling_factor = rotary_embedding_config.rescaling_factor
|
119 |
+
self.upper_freq = 10000
|
120 |
+
self.dim = dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
self._seq_len_cached = None
|
123 |
self._cos_cached = None
|
124 |
self._sin_cached = None
|
125 |
|
126 |
+
|
127 |
+
|
128 |
+
def _compute_cos_sin_tables(self, x, inv_freq, seq_dimension=2):
|
129 |
seq_len = x.shape[seq_dimension]
|
130 |
|
131 |
# Reset the tables if the sequence length has changed,
|
132 |
# or if we're on a new device (possibly due to tracing for instance)
|
133 |
+
self._seq_len_cached = seq_len
|
134 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
|
135 |
+
inv_freq
|
136 |
+
)
|
137 |
+
freqs = torch.outer(t, inv_freq)
|
138 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
|
139 |
|
140 |
+
self._cos_cached = emb.cos()[None, None, :, :]
|
141 |
+
self._sin_cached = emb.sin()[None, None, :, :]
|
142 |
|
143 |
return self._cos_cached, self._sin_cached
|
144 |
|
145 |
def forward(
|
146 |
self, q: torch.Tensor, k: torch.Tensor
|
147 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
148 |
+
|
149 |
+
if self.rescaling_factor is None:
|
150 |
+
inv_freq = 1.0 / (self.upper_freq ** (torch.arange(0, self.dim, 2).float() / self.dim))
|
151 |
+
else:
|
152 |
+
updated_base = self.upper_freq * (
|
153 |
+
self.rescaling_factor ** (self.dim / (self.dim - 2))
|
154 |
+
)
|
155 |
+
inv_freq = 1.0 / (
|
156 |
+
updated_base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
157 |
+
)
|
158 |
|
159 |
+
self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
|
160 |
+
k, inv_freq, seq_dimension=-2,
|
161 |
+
)
|
162 |
+
|
163 |
return (
|
164 |
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
165 |
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
166 |
)
|
167 |
|
168 |
|
169 |
+
|
170 |
class EsmContactPredictionHead(nn.Module):
|
171 |
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
172 |
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d28fe8a570c68cd94353e565e25b23ba8c521f73d9e6d530f39b950ea458c67e
|
3 |
+
size 2237465429
|