# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ESM model configuration""" from dataclasses import asdict, dataclass from typing import Optional from transformers import PretrainedConfig, logging logger = logging.get_logger(__name__) # TODO Update this ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class SegmentNTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ESM [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*): Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ESMModel`]. mask_token_id (`int`, *optional*): The index of the mask token in the vocabulary. This must be included in the config because of the "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. pad_token_id (`int`, *optional*): The index of the padding token in the vocabulary. This must be included in the config because certain parts of the ESM code use this instead of the attention mask. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1026): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. emb_layer_norm_before (`bool`, *optional*): Whether to apply layer normalization after embeddings but before the main stem of the network. token_dropout (`bool`, defaults to `False`): When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. Examples: ```python >>> from transformers import EsmModel, EsmConfig >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() >>> # Initializing a model from the configuration >>> model = ESMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "esm" def __init__( self, vocab_size=None, mask_token_id=None, pad_token_id=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1026, initializer_range=0.02, layer_norm_eps=1e-12, position_embedding_type="absolute", use_cache=True, emb_layer_norm_before=None, token_dropout=False, is_folding_model=False, esmfold_config=None, vocab_list=None, add_bias_fnn=True, rescaling_factor=None, num_layers_head=2, num_features=14, **kwargs, ): super().__init__( pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.emb_layer_norm_before = emb_layer_norm_before self.token_dropout = token_dropout self.is_folding_model = is_folding_model # Arguments needed for dcnuc v2 self.add_bias_fnn = add_bias_fnn # Arguments needed for Segment NT self.num_layers_head = num_layers_head self.num_features = num_features self.rescaling_factor = rescaling_factor if is_folding_model: if esmfold_config is None: logger.info( "No esmfold_config supplied for folding model, using default values." ) esmfold_config = EsmFoldConfig() elif isinstance(esmfold_config, dict): esmfold_config = EsmFoldConfig(**esmfold_config) self.esmfold_config = esmfold_config if vocab_list is None: logger.warning( "No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) self.vocab_list = get_default_vocab_list() else: self.vocab_list = vocab_list else: self.esmfold_config = None self.vocab_list = None if self.esmfold_config is not None and getattr( self.esmfold_config, "use_esm_attn_map", False ): raise ValueError( "The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = super().to_dict() if isinstance(self.esmfold_config, EsmFoldConfig): output["esmfold_config"] = self.esmfold_config.to_dict() return output @dataclass class EsmFoldConfig: esm_type: str = None fp16_esm: bool = True use_esm_attn_map: bool = False esm_ablate_pairwise: bool = False esm_ablate_sequence: bool = False esm_input_dropout: float = 0 embed_aa: bool = True bypass_lm: bool = False lddt_head_hid_dim: int = 128 trunk: "TrunkConfig" = None def __post_init__(self): if self.trunk is None: self.trunk = TrunkConfig() elif isinstance(self.trunk, dict): self.trunk = TrunkConfig(**self.trunk) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = asdict(self) output["trunk"] = self.trunk.to_dict() return output def get_default_vocab_list(): return ( "", "", "", "", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "", "", )