Diffusers
Safetensors
English
wanghaofan commited on
Commit
1347919
·
verified ·
1 Parent(s): 6588318

Upload 3 files

Browse files
diffusion_pytorch_model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a99f3d0262748309658a6fa5371e5a7557f888367a32a2dd4d5616475c85fd8
3
+ size 9962580296
diffusion_pytorch_model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb9948ec50b4fed2fa4d651101bc024502d74dfa1028a75778eb07a6992ebcfe
3
+ size 9949328904
pipeline_flux_de_distill.py ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from diffusers.image_processor import VaeImageProcessor
23
+ from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
24
+ from diffusers.models.autoencoders import AutoencoderKL
25
+ from diffusers.models.transformers import FluxTransformer2DModel
26
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
27
+ from diffusers.utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from diffusers.utils.torch_utils import randn_tensor
36
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
37
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+ >>> from diffusers import FluxPipeline
55
+
56
+ >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
57
+ >>> pipe.to("cuda")
58
+ >>> prompt = "A cat holding a sign that says hello world"
59
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
60
+ >>> # Refer to the pipeline documentation for more details.
61
+ >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
62
+ >>> image.save("flux.png")
63
+ ```
64
+ """
65
+
66
+
67
+ def calculate_shift(
68
+ image_seq_len,
69
+ base_seq_len: int = 256,
70
+ max_seq_len: int = 4096,
71
+ base_shift: float = 0.5,
72
+ max_shift: float = 1.16,
73
+ ):
74
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
75
+ b = base_shift - m * base_seq_len
76
+ mu = image_seq_len * m + b
77
+ return mu
78
+
79
+
80
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
81
+ def retrieve_timesteps(
82
+ scheduler,
83
+ num_inference_steps: Optional[int] = None,
84
+ device: Optional[Union[str, torch.device]] = None,
85
+ timesteps: Optional[List[int]] = None,
86
+ sigmas: Optional[List[float]] = None,
87
+ **kwargs,
88
+ ):
89
+ """
90
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
91
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
92
+
93
+ Args:
94
+ scheduler (`SchedulerMixin`):
95
+ The scheduler to get timesteps from.
96
+ num_inference_steps (`int`):
97
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
98
+ must be `None`.
99
+ device (`str` or `torch.device`, *optional*):
100
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
101
+ timesteps (`List[int]`, *optional*):
102
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
103
+ `num_inference_steps` and `sigmas` must be `None`.
104
+ sigmas (`List[float]`, *optional*):
105
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
106
+ `num_inference_steps` and `timesteps` must be `None`.
107
+
108
+ Returns:
109
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
110
+ second element is the number of inference steps.
111
+ """
112
+ if timesteps is not None and sigmas is not None:
113
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
114
+ if timesteps is not None:
115
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
116
+ if not accepts_timesteps:
117
+ raise ValueError(
118
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
119
+ f" timestep schedules. Please check whether you are using the correct scheduler."
120
+ )
121
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
122
+ timesteps = scheduler.timesteps
123
+ num_inference_steps = len(timesteps)
124
+ elif sigmas is not None:
125
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
126
+ if not accept_sigmas:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ else:
135
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
136
+ timesteps = scheduler.timesteps
137
+ return timesteps, num_inference_steps
138
+
139
+
140
+ class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
141
+ r"""
142
+ The Flux pipeline for text-to-image generation.
143
+
144
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
145
+
146
+ Args:
147
+ transformer ([`FluxTransformer2DModel`]):
148
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
149
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
150
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
151
+ vae ([`AutoencoderKL`]):
152
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
153
+ text_encoder ([`CLIPTextModel`]):
154
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
155
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
156
+ text_encoder_2 ([`T5EncoderModel`]):
157
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
158
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
159
+ tokenizer (`CLIPTokenizer`):
160
+ Tokenizer of class
161
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
162
+ tokenizer_2 (`T5TokenizerFast`):
163
+ Second Tokenizer of class
164
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
165
+ """
166
+
167
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
168
+ _optional_components = []
169
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
170
+
171
+ def __init__(
172
+ self,
173
+ scheduler: FlowMatchEulerDiscreteScheduler,
174
+ vae: AutoencoderKL,
175
+ text_encoder: CLIPTextModel,
176
+ tokenizer: CLIPTokenizer,
177
+ text_encoder_2: T5EncoderModel,
178
+ tokenizer_2: T5TokenizerFast,
179
+ transformer: FluxTransformer2DModel,
180
+ ):
181
+ super().__init__()
182
+
183
+ self.register_modules(
184
+ vae=vae,
185
+ text_encoder=text_encoder,
186
+ text_encoder_2=text_encoder_2,
187
+ tokenizer=tokenizer,
188
+ tokenizer_2=tokenizer_2,
189
+ transformer=transformer,
190
+ scheduler=scheduler,
191
+ )
192
+ self.vae_scale_factor = (
193
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
194
+ )
195
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
196
+ self.tokenizer_max_length = (
197
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
198
+ )
199
+ self.default_sample_size = 64
200
+
201
+ def _get_t5_prompt_embeds(
202
+ self,
203
+ prompt: Union[str, List[str]] = None,
204
+ num_images_per_prompt: int = 1,
205
+ max_sequence_length: int = 512,
206
+ device: Optional[torch.device] = None,
207
+ dtype: Optional[torch.dtype] = None,
208
+ ):
209
+ device = device or self._execution_device
210
+ dtype = dtype or self.text_encoder.dtype
211
+
212
+ prompt = [prompt] if isinstance(prompt, str) else prompt
213
+ batch_size = len(prompt)
214
+
215
+ text_inputs = self.tokenizer_2(
216
+ prompt,
217
+ padding="max_length",
218
+ max_length=max_sequence_length,
219
+ truncation=True,
220
+ return_length=False,
221
+ return_overflowing_tokens=False,
222
+ return_tensors="pt",
223
+ )
224
+ text_input_ids = text_inputs.input_ids
225
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
226
+
227
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
228
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
229
+ logger.warning(
230
+ "The following part of your input was truncated because `max_sequence_length` is set to "
231
+ f" {max_sequence_length} tokens: {removed_text}"
232
+ )
233
+
234
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
235
+
236
+ dtype = self.text_encoder_2.dtype
237
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
238
+
239
+ _, seq_len, _ = prompt_embeds.shape
240
+
241
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
242
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
243
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
244
+
245
+ return prompt_embeds
246
+
247
+ def _get_clip_prompt_embeds(
248
+ self,
249
+ prompt: Union[str, List[str]],
250
+ num_images_per_prompt: int = 1,
251
+ device: Optional[torch.device] = None,
252
+ ):
253
+ device = device or self._execution_device
254
+
255
+ prompt = [prompt] if isinstance(prompt, str) else prompt
256
+ batch_size = len(prompt)
257
+
258
+ text_inputs = self.tokenizer(
259
+ prompt,
260
+ padding="max_length",
261
+ max_length=self.tokenizer_max_length,
262
+ truncation=True,
263
+ return_overflowing_tokens=False,
264
+ return_length=False,
265
+ return_tensors="pt",
266
+ )
267
+
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
270
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
271
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
272
+ logger.warning(
273
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
274
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
275
+ )
276
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
277
+
278
+ # Use pooled output of CLIPTextModel
279
+ prompt_embeds = prompt_embeds.pooler_output
280
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
281
+
282
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
283
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
284
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
285
+
286
+ return prompt_embeds
287
+
288
+ def encode_prompt(
289
+ self,
290
+ prompt: Union[str, List[str]],
291
+ prompt_2: Union[str, List[str]],
292
+ negative_prompt: Union[str, List[str]],
293
+ device: Optional[torch.device] = None,
294
+ num_images_per_prompt: int = 1,
295
+ prompt_embeds: Optional[torch.FloatTensor] = None,
296
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
297
+ max_sequence_length: int = 512,
298
+ lora_scale: Optional[float] = None,
299
+ ):
300
+ r"""
301
+
302
+ Args:
303
+ prompt (`str` or `List[str]`, *optional*):
304
+ prompt to be encoded
305
+ prompt_2 (`str` or `List[str]`, *optional*):
306
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
307
+ used in all text-encoders
308
+ device: (`torch.device`):
309
+ torch device
310
+ num_images_per_prompt (`int`):
311
+ number of images that should be generated per prompt
312
+ prompt_embeds (`torch.FloatTensor`, *optional*):
313
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
314
+ provided, text embeddings will be generated from `prompt` input argument.
315
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
316
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
317
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
318
+ lora_scale (`float`, *optional*):
319
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
320
+ """
321
+ device = device or self._execution_device
322
+
323
+ # set lora scale so that monkey patched LoRA
324
+ # function of text encoder can correctly access it
325
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
326
+ self._lora_scale = lora_scale
327
+
328
+ # dynamically adjust the LoRA scale
329
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
330
+ scale_lora_layers(self.text_encoder, lora_scale)
331
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
332
+ scale_lora_layers(self.text_encoder_2, lora_scale)
333
+
334
+ prompt = [prompt] if isinstance(prompt, str) else prompt
335
+ negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
336
+
337
+ if prompt_embeds is None:
338
+ prompt_2 = prompt_2 or prompt
339
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
340
+
341
+ # We only use the pooled prompt output from the CLIPTextModel
342
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
343
+ prompt=prompt,
344
+ device=device,
345
+ num_images_per_prompt=num_images_per_prompt,
346
+ )
347
+ prompt_embeds = self._get_t5_prompt_embeds(
348
+ prompt=prompt_2,
349
+ num_images_per_prompt=num_images_per_prompt,
350
+ max_sequence_length=max_sequence_length,
351
+ device=device,
352
+ )
353
+
354
+ # We only use the pooled prompt output from the CLIPTextModel
355
+ negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
356
+ prompt=negative_prompt,
357
+ device=device,
358
+ num_images_per_prompt=num_images_per_prompt,
359
+ )
360
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
361
+ prompt=negative_prompt,
362
+ num_images_per_prompt=num_images_per_prompt,
363
+ max_sequence_length=max_sequence_length,
364
+ device=device,
365
+ )
366
+
367
+ if self.text_encoder is not None:
368
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
369
+ # Retrieve the original scale by scaling back the LoRA layers
370
+ unscale_lora_layers(self.text_encoder, lora_scale)
371
+
372
+ if self.text_encoder_2 is not None:
373
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
374
+ # Retrieve the original scale by scaling back the LoRA layers
375
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
376
+
377
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
378
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
379
+
380
+ return prompt_embeds, pooled_prompt_embeds, text_ids, negative_prompt_embeds, negative_pooled_prompt_embeds
381
+
382
+ def check_inputs(
383
+ self,
384
+ prompt,
385
+ prompt_2,
386
+ height,
387
+ width,
388
+ prompt_embeds=None,
389
+ pooled_prompt_embeds=None,
390
+ callback_on_step_end_tensor_inputs=None,
391
+ max_sequence_length=None,
392
+ ):
393
+ if height % 8 != 0 or width % 8 != 0:
394
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
395
+
396
+ if callback_on_step_end_tensor_inputs is not None and not all(
397
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
398
+ ):
399
+ raise ValueError(
400
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
401
+ )
402
+
403
+ if prompt is not None and prompt_embeds is not None:
404
+ raise ValueError(
405
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
406
+ " only forward one of the two."
407
+ )
408
+ elif prompt_2 is not None and prompt_embeds is not None:
409
+ raise ValueError(
410
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
411
+ " only forward one of the two."
412
+ )
413
+ elif prompt is None and prompt_embeds is None:
414
+ raise ValueError(
415
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
416
+ )
417
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
418
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
419
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
420
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
421
+
422
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
423
+ raise ValueError(
424
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
425
+ )
426
+
427
+ if max_sequence_length is not None and max_sequence_length > 512:
428
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
429
+
430
+ @staticmethod
431
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
432
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
433
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
434
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
435
+
436
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
437
+
438
+ latent_image_ids = latent_image_ids.reshape(
439
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
440
+ )
441
+
442
+ return latent_image_ids.to(device=device, dtype=dtype)
443
+
444
+ @staticmethod
445
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
446
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
447
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
448
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
449
+
450
+ return latents
451
+
452
+ @staticmethod
453
+ def _unpack_latents(latents, height, width, vae_scale_factor):
454
+ batch_size, num_patches, channels = latents.shape
455
+
456
+ height = height // vae_scale_factor
457
+ width = width // vae_scale_factor
458
+
459
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
460
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
461
+
462
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
463
+
464
+ return latents
465
+
466
+ def enable_vae_slicing(self):
467
+ r"""
468
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
469
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
470
+ """
471
+ self.vae.enable_slicing()
472
+
473
+ def disable_vae_slicing(self):
474
+ r"""
475
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
476
+ computing decoding in one step.
477
+ """
478
+ self.vae.disable_slicing()
479
+
480
+ def enable_vae_tiling(self):
481
+ r"""
482
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
483
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
484
+ processing larger images.
485
+ """
486
+ self.vae.enable_tiling()
487
+
488
+ def disable_vae_tiling(self):
489
+ r"""
490
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
491
+ computing decoding in one step.
492
+ """
493
+ self.vae.disable_tiling()
494
+
495
+ def prepare_latents(
496
+ self,
497
+ batch_size,
498
+ num_channels_latents,
499
+ height,
500
+ width,
501
+ dtype,
502
+ device,
503
+ generator,
504
+ latents=None,
505
+ ):
506
+ height = 2 * (int(height) // self.vae_scale_factor)
507
+ width = 2 * (int(width) // self.vae_scale_factor)
508
+
509
+ shape = (batch_size, num_channels_latents, height, width)
510
+
511
+ if latents is not None:
512
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
513
+ return latents.to(device=device, dtype=dtype), latent_image_ids
514
+
515
+ if isinstance(generator, list) and len(generator) != batch_size:
516
+ raise ValueError(
517
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
518
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
519
+ )
520
+
521
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
522
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
523
+
524
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
525
+
526
+ return latents, latent_image_ids
527
+
528
+ @property
529
+ def guidance_scale(self):
530
+ return self._guidance_scale
531
+
532
+ @property
533
+ def do_classifier_free_guidance(self):
534
+ return self._guidance_scale > 1
535
+
536
+ @property
537
+ def joint_attention_kwargs(self):
538
+ return self._joint_attention_kwargs
539
+
540
+ @property
541
+ def num_timesteps(self):
542
+ return self._num_timesteps
543
+
544
+ @property
545
+ def interrupt(self):
546
+ return self._interrupt
547
+
548
+ @torch.no_grad()
549
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
550
+ def __call__(
551
+ self,
552
+ prompt: Union[str, List[str]] = None,
553
+ prompt_2: Optional[Union[str, List[str]]] = None,
554
+ negative_prompt: Union[str, List[str]] = None,
555
+ height: Optional[int] = None,
556
+ width: Optional[int] = None,
557
+ num_inference_steps: int = 28,
558
+ timesteps: List[int] = None,
559
+ guidance_scale: float = 3.5,
560
+ num_images_per_prompt: Optional[int] = 1,
561
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
562
+ latents: Optional[torch.FloatTensor] = None,
563
+ prompt_embeds: Optional[torch.FloatTensor] = None,
564
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
565
+ output_type: Optional[str] = "pil",
566
+ return_dict: bool = True,
567
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
568
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
569
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
570
+ max_sequence_length: int = 512,
571
+ ):
572
+ r"""
573
+ Function invoked when calling the pipeline for generation.
574
+
575
+ Args:
576
+ prompt (`str` or `List[str]`, *optional*):
577
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
578
+ instead.
579
+ prompt_2 (`str` or `List[str]`, *optional*):
580
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
581
+ will be used instead
582
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
583
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
584
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
585
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
586
+ num_inference_steps (`int`, *optional*, defaults to 50):
587
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
588
+ expense of slower inference.
589
+ timesteps (`List[int]`, *optional*):
590
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
591
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
592
+ passed will be used. Must be in descending order.
593
+ guidance_scale (`float`, *optional*, defaults to 7.0):
594
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
595
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
596
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
597
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
598
+ usually at the expense of lower image quality.
599
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
600
+ The number of images to generate per prompt.
601
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
602
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
603
+ to make generation deterministic.
604
+ latents (`torch.FloatTensor`, *optional*):
605
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
606
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
607
+ tensor will ge generated by sampling using the supplied random `generator`.
608
+ prompt_embeds (`torch.FloatTensor`, *optional*):
609
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
610
+ provided, text embeddings will be generated from `prompt` input argument.
611
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
612
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
613
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
614
+ output_type (`str`, *optional*, defaults to `"pil"`):
615
+ The output format of the generate image. Choose between
616
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
617
+ return_dict (`bool`, *optional*, defaults to `True`):
618
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
619
+ joint_attention_kwargs (`dict`, *optional*):
620
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
621
+ `self.processor` in
622
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
623
+ callback_on_step_end (`Callable`, *optional*):
624
+ A function that calls at the end of each denoising steps during the inference. The function is called
625
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
626
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
627
+ `callback_on_step_end_tensor_inputs`.
628
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
629
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
630
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
631
+ `._callback_tensor_inputs` attribute of your pipeline class.
632
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
633
+
634
+ Examples:
635
+
636
+ Returns:
637
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
638
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
639
+ images.
640
+ """
641
+
642
+ height = height or self.default_sample_size * self.vae_scale_factor
643
+ width = width or self.default_sample_size * self.vae_scale_factor
644
+
645
+ # 1. Check inputs. Raise error if not correct
646
+ self.check_inputs(
647
+ prompt,
648
+ prompt_2,
649
+ height,
650
+ width,
651
+ prompt_embeds=prompt_embeds,
652
+ pooled_prompt_embeds=pooled_prompt_embeds,
653
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
654
+ max_sequence_length=max_sequence_length,
655
+ )
656
+
657
+ self._guidance_scale = guidance_scale
658
+ self._joint_attention_kwargs = joint_attention_kwargs
659
+ self._interrupt = False
660
+
661
+ # 2. Define call parameters
662
+ if prompt is not None and isinstance(prompt, str):
663
+ batch_size = 1
664
+ elif prompt is not None and isinstance(prompt, list):
665
+ batch_size = len(prompt)
666
+ else:
667
+ batch_size = prompt_embeds.shape[0]
668
+
669
+ device = self._execution_device
670
+
671
+ lora_scale = (
672
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
673
+ )
674
+ (
675
+ prompt_embeds,
676
+ pooled_prompt_embeds,
677
+ text_ids,
678
+ negative_prompt_embeds,
679
+ negative_pooled_prompt_embeds
680
+ ) = self.encode_prompt(
681
+ prompt=prompt,
682
+ prompt_2=prompt_2,
683
+ negative_prompt=negative_prompt,
684
+ prompt_embeds=prompt_embeds,
685
+ pooled_prompt_embeds=pooled_prompt_embeds,
686
+ device=device,
687
+ num_images_per_prompt=num_images_per_prompt,
688
+ max_sequence_length=max_sequence_length,
689
+ lora_scale=lora_scale,
690
+ )
691
+
692
+ if self.do_classifier_free_guidance:
693
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
694
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
695
+
696
+ # 4. Prepare latent variables
697
+ num_channels_latents = self.transformer.config.in_channels // 4
698
+ latents, latent_image_ids = self.prepare_latents(
699
+ batch_size * num_images_per_prompt,
700
+ num_channels_latents,
701
+ height,
702
+ width,
703
+ prompt_embeds.dtype,
704
+ device,
705
+ generator,
706
+ latents,
707
+ )
708
+
709
+ # 5. Prepare timesteps
710
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
711
+ image_seq_len = latents.shape[1]
712
+ mu = calculate_shift(
713
+ image_seq_len,
714
+ self.scheduler.config.base_image_seq_len,
715
+ self.scheduler.config.max_image_seq_len,
716
+ self.scheduler.config.base_shift,
717
+ self.scheduler.config.max_shift,
718
+ )
719
+ timesteps, num_inference_steps = retrieve_timesteps(
720
+ self.scheduler,
721
+ num_inference_steps,
722
+ device,
723
+ timesteps,
724
+ sigmas,
725
+ mu=mu,
726
+ )
727
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
728
+ self._num_timesteps = len(timesteps)
729
+
730
+ # 6. Denoising loop
731
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
732
+ for i, t in enumerate(timesteps):
733
+ if self.interrupt:
734
+ continue
735
+
736
+ # expand the latents if we are doing classifier free guidance
737
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
738
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
739
+ timestep = t.expand(latent_model_input.shape[0])
740
+
741
+ noise_pred = self.transformer(
742
+ hidden_states=latents,
743
+ timestep=timestep / 1000,
744
+ pooled_projections=pooled_prompt_embeds,
745
+ encoder_hidden_states=prompt_embeds,
746
+ txt_ids=text_ids,
747
+ img_ids=latent_image_ids,
748
+ joint_attention_kwargs=self.joint_attention_kwargs,
749
+ return_dict=False,
750
+ )[0]
751
+
752
+ if self.do_classifier_free_guidance:
753
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
754
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
755
+
756
+ # compute the previous noisy sample x_t -> x_t-1
757
+ latents_dtype = latents.dtype
758
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
759
+
760
+ if latents.dtype != latents_dtype:
761
+ if torch.backends.mps.is_available():
762
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
763
+ latents = latents.to(latents_dtype)
764
+
765
+ if callback_on_step_end is not None:
766
+ callback_kwargs = {}
767
+ for k in callback_on_step_end_tensor_inputs:
768
+ callback_kwargs[k] = locals()[k]
769
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
770
+
771
+ latents = callback_outputs.pop("latents", latents)
772
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
773
+
774
+ # call the callback, if provided
775
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
776
+ progress_bar.update()
777
+
778
+ if XLA_AVAILABLE:
779
+ xm.mark_step()
780
+
781
+ if output_type == "latent":
782
+ image = latents
783
+
784
+ else:
785
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
786
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
787
+ image = self.vae.decode(latents, return_dict=False)[0]
788
+ image = self.image_processor.postprocess(image, output_type=output_type)
789
+
790
+ # Offload all models
791
+ self.maybe_free_model_hooks()
792
+
793
+ if not return_dict:
794
+ return (image,)
795
+
796
+ return FluxPipelineOutput(images=image)