First model version
Browse files- Neural_Engine_INT8_IR/conf.yaml +2299 -0
- Neural_Engine_INT8_IR/model.bin +3 -0
- README.md +18 -0
- config.json +35 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
Neural_Engine_INT8_IR/conf.yaml
ADDED
@@ -0,0 +1,2299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
name: model
|
3 |
+
operator:
|
4 |
+
input_data:
|
5 |
+
type: Input
|
6 |
+
output:
|
7 |
+
input_ids:0:
|
8 |
+
dtype: int32
|
9 |
+
shape: [-1, -1]
|
10 |
+
segment_ids:0:
|
11 |
+
dtype: int32
|
12 |
+
shape: [-1, -1]
|
13 |
+
input_mask:0:
|
14 |
+
dtype: int32
|
15 |
+
shape: [-1, -1]
|
16 |
+
bert.embeddings.position_embeddings.weight:0:
|
17 |
+
dtype: fp32
|
18 |
+
shape: [512, 256]
|
19 |
+
location: [0, 524288]
|
20 |
+
bert.embeddings.word_embeddings.weight:0:
|
21 |
+
dtype: fp32
|
22 |
+
shape: [30522, 256]
|
23 |
+
location: [524288, 31254528]
|
24 |
+
bert.embeddings.token_type_embeddings.weight:0:
|
25 |
+
dtype: fp32
|
26 |
+
shape: [2, 256]
|
27 |
+
location: [31778816, 2048]
|
28 |
+
bert.embeddings.LayerNorm.weight:0:
|
29 |
+
dtype: fp32
|
30 |
+
shape: [256]
|
31 |
+
location: [31780864, 1024]
|
32 |
+
bert.embeddings.LayerNorm.bias:0:
|
33 |
+
dtype: fp32
|
34 |
+
shape: [256]
|
35 |
+
location: [31781888, 1024]
|
36 |
+
111:0_min:
|
37 |
+
dtype: fp32
|
38 |
+
shape: [1]
|
39 |
+
location: [31782912, 4]
|
40 |
+
111:0_max:
|
41 |
+
dtype: fp32
|
42 |
+
shape: [1]
|
43 |
+
location: [31782916, 4]
|
44 |
+
'576:0':
|
45 |
+
dtype: s8
|
46 |
+
shape: [256, 256]
|
47 |
+
location: [31782920, 65536]
|
48 |
+
bert.encoder.layer.0.attention.self.key.bias:0:
|
49 |
+
dtype: s32
|
50 |
+
shape: [256]
|
51 |
+
location: [31848456, 1024]
|
52 |
+
111:0_quant_min:
|
53 |
+
dtype: fp32
|
54 |
+
shape: [1]
|
55 |
+
location: [31988776, 4]
|
56 |
+
111:0_quant_max:
|
57 |
+
dtype: fp32
|
58 |
+
shape: [1]
|
59 |
+
location: [31988780, 4]
|
60 |
+
576:0_min:
|
61 |
+
dtype: fp32
|
62 |
+
shape: [256]
|
63 |
+
location: [31849480, 1024]
|
64 |
+
576:0_max:
|
65 |
+
dtype: fp32
|
66 |
+
shape: [256]
|
67 |
+
location: [31850504, 1024]
|
68 |
+
Add_34:0_min:
|
69 |
+
dtype: fp32
|
70 |
+
shape: [1]
|
71 |
+
location: [31851536, 4]
|
72 |
+
Add_34:0_max:
|
73 |
+
dtype: fp32
|
74 |
+
shape: [1]
|
75 |
+
location: [31851540, 4]
|
76 |
+
'579:0':
|
77 |
+
dtype: s8
|
78 |
+
shape: [256, 256]
|
79 |
+
location: [31851544, 65536]
|
80 |
+
bert.encoder.layer.0.attention.self.value.bias:0:
|
81 |
+
dtype: s32
|
82 |
+
shape: [256]
|
83 |
+
location: [31917080, 1024]
|
84 |
+
579:0_min:
|
85 |
+
dtype: fp32
|
86 |
+
shape: [256]
|
87 |
+
location: [31918104, 1024]
|
88 |
+
579:0_max:
|
89 |
+
dtype: fp32
|
90 |
+
shape: [256]
|
91 |
+
location: [31919128, 1024]
|
92 |
+
Add_46:0_min:
|
93 |
+
dtype: fp32
|
94 |
+
shape: [1]
|
95 |
+
location: [31920160, 4]
|
96 |
+
Add_46:0_max:
|
97 |
+
dtype: fp32
|
98 |
+
shape: [1]
|
99 |
+
location: [31920164, 4]
|
100 |
+
'575:0':
|
101 |
+
dtype: s8
|
102 |
+
shape: [256, 256]
|
103 |
+
location: [31920168, 65536]
|
104 |
+
bert.encoder.layer.0.attention.self.query.bias:0:
|
105 |
+
dtype: s32
|
106 |
+
shape: [256]
|
107 |
+
location: [31985704, 1024]
|
108 |
+
575:0_min:
|
109 |
+
dtype: fp32
|
110 |
+
shape: [256]
|
111 |
+
location: [31986728, 1024]
|
112 |
+
575:0_max:
|
113 |
+
dtype: fp32
|
114 |
+
shape: [256]
|
115 |
+
location: [31987752, 1024]
|
116 |
+
Add_32:0_min:
|
117 |
+
dtype: fp32
|
118 |
+
shape: [1]
|
119 |
+
location: [31988784, 4]
|
120 |
+
Add_32:0_max:
|
121 |
+
dtype: fp32
|
122 |
+
shape: [1]
|
123 |
+
location: [31988788, 4]
|
124 |
+
163:0_quant_min:
|
125 |
+
dtype: fp32
|
126 |
+
shape: [1]
|
127 |
+
location: [31988792, 4]
|
128 |
+
163:0_quant_max:
|
129 |
+
dtype: fp32
|
130 |
+
shape: [1]
|
131 |
+
location: [31988796, 4]
|
132 |
+
131:0_quant_min:
|
133 |
+
dtype: fp32
|
134 |
+
shape: [1]
|
135 |
+
location: [31988800, 4]
|
136 |
+
131:0_quant_max:
|
137 |
+
dtype: fp32
|
138 |
+
shape: [1]
|
139 |
+
location: [31988804, 4]
|
140 |
+
169:0_min:
|
141 |
+
dtype: fp32
|
142 |
+
shape: [1]
|
143 |
+
location: [31988808, 4]
|
144 |
+
169:0_max:
|
145 |
+
dtype: fp32
|
146 |
+
shape: [1]
|
147 |
+
location: [31988812, 4]
|
148 |
+
170:0_quant_min:
|
149 |
+
dtype: fp32
|
150 |
+
shape: [1]
|
151 |
+
location: [31988824, 4]
|
152 |
+
170:0_quant_max:
|
153 |
+
dtype: fp32
|
154 |
+
shape: [1]
|
155 |
+
location: [31988828, 4]
|
156 |
+
148:0_quant_min:
|
157 |
+
dtype: fp32
|
158 |
+
shape: [1]
|
159 |
+
location: [31988832, 4]
|
160 |
+
148:0_quant_max:
|
161 |
+
dtype: fp32
|
162 |
+
shape: [1]
|
163 |
+
location: [31988836, 4]
|
164 |
+
172:0_min:
|
165 |
+
dtype: fp32
|
166 |
+
shape: [1]
|
167 |
+
location: [31988840, 4]
|
168 |
+
172:0_max:
|
169 |
+
dtype: fp32
|
170 |
+
shape: [1]
|
171 |
+
location: [31988844, 4]
|
172 |
+
'585:0':
|
173 |
+
dtype: s8
|
174 |
+
shape: [256, 256]
|
175 |
+
location: [31988848, 65536]
|
176 |
+
bert.encoder.layer.0.attention.output.dense.bias:0:
|
177 |
+
dtype: s32
|
178 |
+
shape: [256]
|
179 |
+
location: [32054384, 1024]
|
180 |
+
184:0_quant_min:
|
181 |
+
dtype: fp32
|
182 |
+
shape: [1]
|
183 |
+
location: [32057456, 4]
|
184 |
+
184:0_quant_max:
|
185 |
+
dtype: fp32
|
186 |
+
shape: [1]
|
187 |
+
location: [32057460, 4]
|
188 |
+
585:0_min:
|
189 |
+
dtype: fp32
|
190 |
+
shape: [256]
|
191 |
+
location: [32055408, 1024]
|
192 |
+
585:0_max:
|
193 |
+
dtype: fp32
|
194 |
+
shape: [256]
|
195 |
+
location: [32056432, 1024]
|
196 |
+
188:0_min:
|
197 |
+
dtype: fp32
|
198 |
+
shape: [1]
|
199 |
+
location: [32057464, 4]
|
200 |
+
188:0_max:
|
201 |
+
dtype: fp32
|
202 |
+
shape: [1]
|
203 |
+
location: [32057468, 4]
|
204 |
+
bert.encoder.layer.0.attention.output.LayerNorm.weight:0:
|
205 |
+
dtype: fp32
|
206 |
+
shape: [256]
|
207 |
+
location: [32057472, 1024]
|
208 |
+
bert.encoder.layer.0.attention.output.LayerNorm.bias:0:
|
209 |
+
dtype: fp32
|
210 |
+
shape: [256]
|
211 |
+
location: [32058496, 1024]
|
212 |
+
199:0_min:
|
213 |
+
dtype: fp32
|
214 |
+
shape: [1]
|
215 |
+
location: [32059520, 4]
|
216 |
+
199:0_max:
|
217 |
+
dtype: fp32
|
218 |
+
shape: [1]
|
219 |
+
location: [32059524, 4]
|
220 |
+
'586:0':
|
221 |
+
dtype: s8
|
222 |
+
shape: [1024, 256]
|
223 |
+
location: [32059528, 262144]
|
224 |
+
bert.encoder.layer.0.intermediate.dense.bias:0:
|
225 |
+
dtype: s32
|
226 |
+
shape: [1024]
|
227 |
+
location: [32321672, 4096]
|
228 |
+
199:0_quant_min:
|
229 |
+
dtype: fp32
|
230 |
+
shape: [1]
|
231 |
+
location: [32333960, 4]
|
232 |
+
199:0_quant_max:
|
233 |
+
dtype: fp32
|
234 |
+
shape: [1]
|
235 |
+
location: [32333964, 4]
|
236 |
+
586:0_min:
|
237 |
+
dtype: fp32
|
238 |
+
shape: [1024]
|
239 |
+
location: [32325768, 4096]
|
240 |
+
586:0_max:
|
241 |
+
dtype: fp32
|
242 |
+
shape: [1024]
|
243 |
+
location: [32329864, 4096]
|
244 |
+
210:0_quant_min:
|
245 |
+
dtype: fp32
|
246 |
+
shape: [1]
|
247 |
+
location: [32599200, 4]
|
248 |
+
210:0_quant_max:
|
249 |
+
dtype: fp32
|
250 |
+
shape: [1]
|
251 |
+
location: [32599204, 4]
|
252 |
+
'587:0':
|
253 |
+
dtype: s8
|
254 |
+
shape: [256, 1024]
|
255 |
+
location: [32333984, 262144]
|
256 |
+
bert.encoder.layer.0.output.dense.bias:0:
|
257 |
+
dtype: s32
|
258 |
+
shape: [256]
|
259 |
+
location: [32596128, 1024]
|
260 |
+
587:0_min:
|
261 |
+
dtype: fp32
|
262 |
+
shape: [256]
|
263 |
+
location: [32597152, 1024]
|
264 |
+
587:0_max:
|
265 |
+
dtype: fp32
|
266 |
+
shape: [256]
|
267 |
+
location: [32598176, 1024]
|
268 |
+
214:0_min:
|
269 |
+
dtype: fp32
|
270 |
+
shape: [1]
|
271 |
+
location: [32599208, 4]
|
272 |
+
214:0_max:
|
273 |
+
dtype: fp32
|
274 |
+
shape: [1]
|
275 |
+
location: [32599212, 4]
|
276 |
+
bert.encoder.layer.0.output.LayerNorm.weight:0:
|
277 |
+
dtype: fp32
|
278 |
+
shape: [256]
|
279 |
+
location: [32599216, 1024]
|
280 |
+
bert.encoder.layer.0.output.LayerNorm.bias:0:
|
281 |
+
dtype: fp32
|
282 |
+
shape: [256]
|
283 |
+
location: [32600240, 1024]
|
284 |
+
225:0_min:
|
285 |
+
dtype: fp32
|
286 |
+
shape: [1]
|
287 |
+
location: [32601264, 4]
|
288 |
+
225:0_max:
|
289 |
+
dtype: fp32
|
290 |
+
shape: [1]
|
291 |
+
location: [32601268, 4]
|
292 |
+
'589:0':
|
293 |
+
dtype: s8
|
294 |
+
shape: [256, 256]
|
295 |
+
location: [32601272, 65536]
|
296 |
+
bert.encoder.layer.1.attention.self.key.bias:0:
|
297 |
+
dtype: s32
|
298 |
+
shape: [256]
|
299 |
+
location: [32666808, 1024]
|
300 |
+
225:0_quant_min:
|
301 |
+
dtype: fp32
|
302 |
+
shape: [1]
|
303 |
+
location: [32807128, 4]
|
304 |
+
225:0_quant_max:
|
305 |
+
dtype: fp32
|
306 |
+
shape: [1]
|
307 |
+
location: [32807132, 4]
|
308 |
+
589:0_min:
|
309 |
+
dtype: fp32
|
310 |
+
shape: [256]
|
311 |
+
location: [32667832, 1024]
|
312 |
+
589:0_max:
|
313 |
+
dtype: fp32
|
314 |
+
shape: [256]
|
315 |
+
location: [32668856, 1024]
|
316 |
+
Add_128:0_min:
|
317 |
+
dtype: fp32
|
318 |
+
shape: [1]
|
319 |
+
location: [32669888, 4]
|
320 |
+
Add_128:0_max:
|
321 |
+
dtype: fp32
|
322 |
+
shape: [1]
|
323 |
+
location: [32669892, 4]
|
324 |
+
'592:0':
|
325 |
+
dtype: s8
|
326 |
+
shape: [256, 256]
|
327 |
+
location: [32669896, 65536]
|
328 |
+
bert.encoder.layer.1.attention.self.value.bias:0:
|
329 |
+
dtype: s32
|
330 |
+
shape: [256]
|
331 |
+
location: [32735432, 1024]
|
332 |
+
592:0_min:
|
333 |
+
dtype: fp32
|
334 |
+
shape: [256]
|
335 |
+
location: [32736456, 1024]
|
336 |
+
592:0_max:
|
337 |
+
dtype: fp32
|
338 |
+
shape: [256]
|
339 |
+
location: [32737480, 1024]
|
340 |
+
Add_140:0_min:
|
341 |
+
dtype: fp32
|
342 |
+
shape: [1]
|
343 |
+
location: [32738512, 4]
|
344 |
+
Add_140:0_max:
|
345 |
+
dtype: fp32
|
346 |
+
shape: [1]
|
347 |
+
location: [32738516, 4]
|
348 |
+
'588:0':
|
349 |
+
dtype: s8
|
350 |
+
shape: [256, 256]
|
351 |
+
location: [32738520, 65536]
|
352 |
+
bert.encoder.layer.1.attention.self.query.bias:0:
|
353 |
+
dtype: s32
|
354 |
+
shape: [256]
|
355 |
+
location: [32804056, 1024]
|
356 |
+
588:0_min:
|
357 |
+
dtype: fp32
|
358 |
+
shape: [256]
|
359 |
+
location: [32805080, 1024]
|
360 |
+
588:0_max:
|
361 |
+
dtype: fp32
|
362 |
+
shape: [256]
|
363 |
+
location: [32806104, 1024]
|
364 |
+
Add_126:0_min:
|
365 |
+
dtype: fp32
|
366 |
+
shape: [1]
|
367 |
+
location: [32807136, 4]
|
368 |
+
Add_126:0_max:
|
369 |
+
dtype: fp32
|
370 |
+
shape: [1]
|
371 |
+
location: [32807140, 4]
|
372 |
+
277:0_quant_min:
|
373 |
+
dtype: fp32
|
374 |
+
shape: [1]
|
375 |
+
location: [32807144, 4]
|
376 |
+
277:0_quant_max:
|
377 |
+
dtype: fp32
|
378 |
+
shape: [1]
|
379 |
+
location: [32807148, 4]
|
380 |
+
245:0_quant_min:
|
381 |
+
dtype: fp32
|
382 |
+
shape: [1]
|
383 |
+
location: [32807152, 4]
|
384 |
+
245:0_quant_max:
|
385 |
+
dtype: fp32
|
386 |
+
shape: [1]
|
387 |
+
location: [32807156, 4]
|
388 |
+
283:0_min:
|
389 |
+
dtype: fp32
|
390 |
+
shape: [1]
|
391 |
+
location: [32807160, 4]
|
392 |
+
283:0_max:
|
393 |
+
dtype: fp32
|
394 |
+
shape: [1]
|
395 |
+
location: [32807164, 4]
|
396 |
+
284:0_quant_min:
|
397 |
+
dtype: fp32
|
398 |
+
shape: [1]
|
399 |
+
location: [32807176, 4]
|
400 |
+
284:0_quant_max:
|
401 |
+
dtype: fp32
|
402 |
+
shape: [1]
|
403 |
+
location: [32807180, 4]
|
404 |
+
262:0_quant_min:
|
405 |
+
dtype: fp32
|
406 |
+
shape: [1]
|
407 |
+
location: [32807184, 4]
|
408 |
+
262:0_quant_max:
|
409 |
+
dtype: fp32
|
410 |
+
shape: [1]
|
411 |
+
location: [32807188, 4]
|
412 |
+
286:0_min:
|
413 |
+
dtype: fp32
|
414 |
+
shape: [1]
|
415 |
+
location: [32807192, 4]
|
416 |
+
286:0_max:
|
417 |
+
dtype: fp32
|
418 |
+
shape: [1]
|
419 |
+
location: [32807196, 4]
|
420 |
+
'598:0':
|
421 |
+
dtype: s8
|
422 |
+
shape: [256, 256]
|
423 |
+
location: [32807200, 65536]
|
424 |
+
bert.encoder.layer.1.attention.output.dense.bias:0:
|
425 |
+
dtype: s32
|
426 |
+
shape: [256]
|
427 |
+
location: [32872736, 1024]
|
428 |
+
298:0_quant_min:
|
429 |
+
dtype: fp32
|
430 |
+
shape: [1]
|
431 |
+
location: [32875808, 4]
|
432 |
+
298:0_quant_max:
|
433 |
+
dtype: fp32
|
434 |
+
shape: [1]
|
435 |
+
location: [32875812, 4]
|
436 |
+
598:0_min:
|
437 |
+
dtype: fp32
|
438 |
+
shape: [256]
|
439 |
+
location: [32873760, 1024]
|
440 |
+
598:0_max:
|
441 |
+
dtype: fp32
|
442 |
+
shape: [256]
|
443 |
+
location: [32874784, 1024]
|
444 |
+
302:0_min:
|
445 |
+
dtype: fp32
|
446 |
+
shape: [1]
|
447 |
+
location: [32875816, 4]
|
448 |
+
302:0_max:
|
449 |
+
dtype: fp32
|
450 |
+
shape: [1]
|
451 |
+
location: [32875820, 4]
|
452 |
+
bert.encoder.layer.1.attention.output.LayerNorm.weight:0:
|
453 |
+
dtype: fp32
|
454 |
+
shape: [256]
|
455 |
+
location: [32875824, 1024]
|
456 |
+
bert.encoder.layer.1.attention.output.LayerNorm.bias:0:
|
457 |
+
dtype: fp32
|
458 |
+
shape: [256]
|
459 |
+
location: [32876848, 1024]
|
460 |
+
313:0_min:
|
461 |
+
dtype: fp32
|
462 |
+
shape: [1]
|
463 |
+
location: [32877872, 4]
|
464 |
+
313:0_max:
|
465 |
+
dtype: fp32
|
466 |
+
shape: [1]
|
467 |
+
location: [32877876, 4]
|
468 |
+
'599:0':
|
469 |
+
dtype: s8
|
470 |
+
shape: [1024, 256]
|
471 |
+
location: [32877880, 262144]
|
472 |
+
bert.encoder.layer.1.intermediate.dense.bias:0:
|
473 |
+
dtype: s32
|
474 |
+
shape: [1024]
|
475 |
+
location: [33140024, 4096]
|
476 |
+
313:0_quant_min:
|
477 |
+
dtype: fp32
|
478 |
+
shape: [1]
|
479 |
+
location: [33152312, 4]
|
480 |
+
313:0_quant_max:
|
481 |
+
dtype: fp32
|
482 |
+
shape: [1]
|
483 |
+
location: [33152316, 4]
|
484 |
+
599:0_min:
|
485 |
+
dtype: fp32
|
486 |
+
shape: [1024]
|
487 |
+
location: [33144120, 4096]
|
488 |
+
599:0_max:
|
489 |
+
dtype: fp32
|
490 |
+
shape: [1024]
|
491 |
+
location: [33148216, 4096]
|
492 |
+
324:0_quant_min:
|
493 |
+
dtype: fp32
|
494 |
+
shape: [1]
|
495 |
+
location: [33417552, 4]
|
496 |
+
324:0_quant_max:
|
497 |
+
dtype: fp32
|
498 |
+
shape: [1]
|
499 |
+
location: [33417556, 4]
|
500 |
+
'600:0':
|
501 |
+
dtype: s8
|
502 |
+
shape: [256, 1024]
|
503 |
+
location: [33152336, 262144]
|
504 |
+
bert.encoder.layer.1.output.dense.bias:0:
|
505 |
+
dtype: s32
|
506 |
+
shape: [256]
|
507 |
+
location: [33414480, 1024]
|
508 |
+
600:0_min:
|
509 |
+
dtype: fp32
|
510 |
+
shape: [256]
|
511 |
+
location: [33415504, 1024]
|
512 |
+
600:0_max:
|
513 |
+
dtype: fp32
|
514 |
+
shape: [256]
|
515 |
+
location: [33416528, 1024]
|
516 |
+
328:0_min:
|
517 |
+
dtype: fp32
|
518 |
+
shape: [1]
|
519 |
+
location: [33417560, 4]
|
520 |
+
328:0_max:
|
521 |
+
dtype: fp32
|
522 |
+
shape: [1]
|
523 |
+
location: [33417564, 4]
|
524 |
+
bert.encoder.layer.1.output.LayerNorm.weight:0:
|
525 |
+
dtype: fp32
|
526 |
+
shape: [256]
|
527 |
+
location: [33417568, 1024]
|
528 |
+
bert.encoder.layer.1.output.LayerNorm.bias:0:
|
529 |
+
dtype: fp32
|
530 |
+
shape: [256]
|
531 |
+
location: [33418592, 1024]
|
532 |
+
339:0_min:
|
533 |
+
dtype: fp32
|
534 |
+
shape: [1]
|
535 |
+
location: [33419616, 4]
|
536 |
+
339:0_max:
|
537 |
+
dtype: fp32
|
538 |
+
shape: [1]
|
539 |
+
location: [33419620, 4]
|
540 |
+
'602:0':
|
541 |
+
dtype: s8
|
542 |
+
shape: [256, 256]
|
543 |
+
location: [33419624, 65536]
|
544 |
+
bert.encoder.layer.2.attention.self.key.bias:0:
|
545 |
+
dtype: s32
|
546 |
+
shape: [256]
|
547 |
+
location: [33485160, 1024]
|
548 |
+
339:0_quant_min:
|
549 |
+
dtype: fp32
|
550 |
+
shape: [1]
|
551 |
+
location: [33625480, 4]
|
552 |
+
339:0_quant_max:
|
553 |
+
dtype: fp32
|
554 |
+
shape: [1]
|
555 |
+
location: [33625484, 4]
|
556 |
+
602:0_min:
|
557 |
+
dtype: fp32
|
558 |
+
shape: [256]
|
559 |
+
location: [33486184, 1024]
|
560 |
+
602:0_max:
|
561 |
+
dtype: fp32
|
562 |
+
shape: [256]
|
563 |
+
location: [33487208, 1024]
|
564 |
+
Add_222:0_min:
|
565 |
+
dtype: fp32
|
566 |
+
shape: [1]
|
567 |
+
location: [33488240, 4]
|
568 |
+
Add_222:0_max:
|
569 |
+
dtype: fp32
|
570 |
+
shape: [1]
|
571 |
+
location: [33488244, 4]
|
572 |
+
'605:0':
|
573 |
+
dtype: s8
|
574 |
+
shape: [256, 256]
|
575 |
+
location: [33488248, 65536]
|
576 |
+
bert.encoder.layer.2.attention.self.value.bias:0:
|
577 |
+
dtype: s32
|
578 |
+
shape: [256]
|
579 |
+
location: [33553784, 1024]
|
580 |
+
605:0_min:
|
581 |
+
dtype: fp32
|
582 |
+
shape: [256]
|
583 |
+
location: [33554808, 1024]
|
584 |
+
605:0_max:
|
585 |
+
dtype: fp32
|
586 |
+
shape: [256]
|
587 |
+
location: [33555832, 1024]
|
588 |
+
Add_234:0_min:
|
589 |
+
dtype: fp32
|
590 |
+
shape: [1]
|
591 |
+
location: [33556864, 4]
|
592 |
+
Add_234:0_max:
|
593 |
+
dtype: fp32
|
594 |
+
shape: [1]
|
595 |
+
location: [33556868, 4]
|
596 |
+
'601:0':
|
597 |
+
dtype: s8
|
598 |
+
shape: [256, 256]
|
599 |
+
location: [33556872, 65536]
|
600 |
+
bert.encoder.layer.2.attention.self.query.bias:0:
|
601 |
+
dtype: s32
|
602 |
+
shape: [256]
|
603 |
+
location: [33622408, 1024]
|
604 |
+
601:0_min:
|
605 |
+
dtype: fp32
|
606 |
+
shape: [256]
|
607 |
+
location: [33623432, 1024]
|
608 |
+
601:0_max:
|
609 |
+
dtype: fp32
|
610 |
+
shape: [256]
|
611 |
+
location: [33624456, 1024]
|
612 |
+
Add_220:0_min:
|
613 |
+
dtype: fp32
|
614 |
+
shape: [1]
|
615 |
+
location: [33625488, 4]
|
616 |
+
Add_220:0_max:
|
617 |
+
dtype: fp32
|
618 |
+
shape: [1]
|
619 |
+
location: [33625492, 4]
|
620 |
+
391:0_quant_min:
|
621 |
+
dtype: fp32
|
622 |
+
shape: [1]
|
623 |
+
location: [33625496, 4]
|
624 |
+
391:0_quant_max:
|
625 |
+
dtype: fp32
|
626 |
+
shape: [1]
|
627 |
+
location: [33625500, 4]
|
628 |
+
359:0_quant_min:
|
629 |
+
dtype: fp32
|
630 |
+
shape: [1]
|
631 |
+
location: [33625504, 4]
|
632 |
+
359:0_quant_max:
|
633 |
+
dtype: fp32
|
634 |
+
shape: [1]
|
635 |
+
location: [33625508, 4]
|
636 |
+
397:0_min:
|
637 |
+
dtype: fp32
|
638 |
+
shape: [1]
|
639 |
+
location: [33625512, 4]
|
640 |
+
397:0_max:
|
641 |
+
dtype: fp32
|
642 |
+
shape: [1]
|
643 |
+
location: [33625516, 4]
|
644 |
+
398:0_quant_min:
|
645 |
+
dtype: fp32
|
646 |
+
shape: [1]
|
647 |
+
location: [33625528, 4]
|
648 |
+
398:0_quant_max:
|
649 |
+
dtype: fp32
|
650 |
+
shape: [1]
|
651 |
+
location: [33625532, 4]
|
652 |
+
376:0_quant_min:
|
653 |
+
dtype: fp32
|
654 |
+
shape: [1]
|
655 |
+
location: [33625536, 4]
|
656 |
+
376:0_quant_max:
|
657 |
+
dtype: fp32
|
658 |
+
shape: [1]
|
659 |
+
location: [33625540, 4]
|
660 |
+
400:0_min:
|
661 |
+
dtype: fp32
|
662 |
+
shape: [1]
|
663 |
+
location: [33625544, 4]
|
664 |
+
400:0_max:
|
665 |
+
dtype: fp32
|
666 |
+
shape: [1]
|
667 |
+
location: [33625548, 4]
|
668 |
+
'611:0':
|
669 |
+
dtype: s8
|
670 |
+
shape: [256, 256]
|
671 |
+
location: [33625552, 65536]
|
672 |
+
bert.encoder.layer.2.attention.output.dense.bias:0:
|
673 |
+
dtype: s32
|
674 |
+
shape: [256]
|
675 |
+
location: [33691088, 1024]
|
676 |
+
412:0_quant_min:
|
677 |
+
dtype: fp32
|
678 |
+
shape: [1]
|
679 |
+
location: [33694160, 4]
|
680 |
+
412:0_quant_max:
|
681 |
+
dtype: fp32
|
682 |
+
shape: [1]
|
683 |
+
location: [33694164, 4]
|
684 |
+
611:0_min:
|
685 |
+
dtype: fp32
|
686 |
+
shape: [256]
|
687 |
+
location: [33692112, 1024]
|
688 |
+
611:0_max:
|
689 |
+
dtype: fp32
|
690 |
+
shape: [256]
|
691 |
+
location: [33693136, 1024]
|
692 |
+
416:0_min:
|
693 |
+
dtype: fp32
|
694 |
+
shape: [1]
|
695 |
+
location: [33694168, 4]
|
696 |
+
416:0_max:
|
697 |
+
dtype: fp32
|
698 |
+
shape: [1]
|
699 |
+
location: [33694172, 4]
|
700 |
+
bert.encoder.layer.2.attention.output.LayerNorm.weight:0:
|
701 |
+
dtype: fp32
|
702 |
+
shape: [256]
|
703 |
+
location: [33694176, 1024]
|
704 |
+
bert.encoder.layer.2.attention.output.LayerNorm.bias:0:
|
705 |
+
dtype: fp32
|
706 |
+
shape: [256]
|
707 |
+
location: [33695200, 1024]
|
708 |
+
427:0_min:
|
709 |
+
dtype: fp32
|
710 |
+
shape: [1]
|
711 |
+
location: [33696224, 4]
|
712 |
+
427:0_max:
|
713 |
+
dtype: fp32
|
714 |
+
shape: [1]
|
715 |
+
location: [33696228, 4]
|
716 |
+
'612:0':
|
717 |
+
dtype: s8
|
718 |
+
shape: [1024, 256]
|
719 |
+
location: [33696232, 262144]
|
720 |
+
bert.encoder.layer.2.intermediate.dense.bias:0:
|
721 |
+
dtype: s32
|
722 |
+
shape: [1024]
|
723 |
+
location: [33958376, 4096]
|
724 |
+
427:0_quant_min:
|
725 |
+
dtype: fp32
|
726 |
+
shape: [1]
|
727 |
+
location: [33970664, 4]
|
728 |
+
427:0_quant_max:
|
729 |
+
dtype: fp32
|
730 |
+
shape: [1]
|
731 |
+
location: [33970668, 4]
|
732 |
+
612:0_min:
|
733 |
+
dtype: fp32
|
734 |
+
shape: [1024]
|
735 |
+
location: [33962472, 4096]
|
736 |
+
612:0_max:
|
737 |
+
dtype: fp32
|
738 |
+
shape: [1024]
|
739 |
+
location: [33966568, 4096]
|
740 |
+
438:0_quant_min:
|
741 |
+
dtype: fp32
|
742 |
+
shape: [1]
|
743 |
+
location: [34235904, 4]
|
744 |
+
438:0_quant_max:
|
745 |
+
dtype: fp32
|
746 |
+
shape: [1]
|
747 |
+
location: [34235908, 4]
|
748 |
+
'613:0':
|
749 |
+
dtype: s8
|
750 |
+
shape: [256, 1024]
|
751 |
+
location: [33970688, 262144]
|
752 |
+
bert.encoder.layer.2.output.dense.bias:0:
|
753 |
+
dtype: s32
|
754 |
+
shape: [256]
|
755 |
+
location: [34232832, 1024]
|
756 |
+
613:0_min:
|
757 |
+
dtype: fp32
|
758 |
+
shape: [256]
|
759 |
+
location: [34233856, 1024]
|
760 |
+
613:0_max:
|
761 |
+
dtype: fp32
|
762 |
+
shape: [256]
|
763 |
+
location: [34234880, 1024]
|
764 |
+
442:0_min:
|
765 |
+
dtype: fp32
|
766 |
+
shape: [1]
|
767 |
+
location: [34235912, 4]
|
768 |
+
442:0_max:
|
769 |
+
dtype: fp32
|
770 |
+
shape: [1]
|
771 |
+
location: [34235916, 4]
|
772 |
+
bert.encoder.layer.2.output.LayerNorm.weight:0:
|
773 |
+
dtype: fp32
|
774 |
+
shape: [256]
|
775 |
+
location: [34235920, 1024]
|
776 |
+
bert.encoder.layer.2.output.LayerNorm.bias:0:
|
777 |
+
dtype: fp32
|
778 |
+
shape: [256]
|
779 |
+
location: [34236944, 1024]
|
780 |
+
453:0_min:
|
781 |
+
dtype: fp32
|
782 |
+
shape: [1]
|
783 |
+
location: [34237968, 4]
|
784 |
+
453:0_max:
|
785 |
+
dtype: fp32
|
786 |
+
shape: [1]
|
787 |
+
location: [34237972, 4]
|
788 |
+
'615:0':
|
789 |
+
dtype: s8
|
790 |
+
shape: [256, 256]
|
791 |
+
location: [34237976, 65536]
|
792 |
+
bert.encoder.layer.3.attention.self.key.bias:0:
|
793 |
+
dtype: s32
|
794 |
+
shape: [256]
|
795 |
+
location: [34303512, 1024]
|
796 |
+
453:0_quant_min:
|
797 |
+
dtype: fp32
|
798 |
+
shape: [1]
|
799 |
+
location: [34443832, 4]
|
800 |
+
453:0_quant_max:
|
801 |
+
dtype: fp32
|
802 |
+
shape: [1]
|
803 |
+
location: [34443836, 4]
|
804 |
+
615:0_min:
|
805 |
+
dtype: fp32
|
806 |
+
shape: [256]
|
807 |
+
location: [34304536, 1024]
|
808 |
+
615:0_max:
|
809 |
+
dtype: fp32
|
810 |
+
shape: [256]
|
811 |
+
location: [34305560, 1024]
|
812 |
+
Add_316:0_min:
|
813 |
+
dtype: fp32
|
814 |
+
shape: [1]
|
815 |
+
location: [34306592, 4]
|
816 |
+
Add_316:0_max:
|
817 |
+
dtype: fp32
|
818 |
+
shape: [1]
|
819 |
+
location: [34306596, 4]
|
820 |
+
'618:0':
|
821 |
+
dtype: s8
|
822 |
+
shape: [256, 256]
|
823 |
+
location: [34306600, 65536]
|
824 |
+
bert.encoder.layer.3.attention.self.value.bias:0:
|
825 |
+
dtype: s32
|
826 |
+
shape: [256]
|
827 |
+
location: [34372136, 1024]
|
828 |
+
618:0_min:
|
829 |
+
dtype: fp32
|
830 |
+
shape: [256]
|
831 |
+
location: [34373160, 1024]
|
832 |
+
618:0_max:
|
833 |
+
dtype: fp32
|
834 |
+
shape: [256]
|
835 |
+
location: [34374184, 1024]
|
836 |
+
Add_328:0_min:
|
837 |
+
dtype: fp32
|
838 |
+
shape: [1]
|
839 |
+
location: [34375216, 4]
|
840 |
+
Add_328:0_max:
|
841 |
+
dtype: fp32
|
842 |
+
shape: [1]
|
843 |
+
location: [34375220, 4]
|
844 |
+
'614:0':
|
845 |
+
dtype: s8
|
846 |
+
shape: [256, 256]
|
847 |
+
location: [34375224, 65536]
|
848 |
+
bert.encoder.layer.3.attention.self.query.bias:0:
|
849 |
+
dtype: s32
|
850 |
+
shape: [256]
|
851 |
+
location: [34440760, 1024]
|
852 |
+
614:0_min:
|
853 |
+
dtype: fp32
|
854 |
+
shape: [256]
|
855 |
+
location: [34441784, 1024]
|
856 |
+
614:0_max:
|
857 |
+
dtype: fp32
|
858 |
+
shape: [256]
|
859 |
+
location: [34442808, 1024]
|
860 |
+
Add_314:0_min:
|
861 |
+
dtype: fp32
|
862 |
+
shape: [1]
|
863 |
+
location: [34443840, 4]
|
864 |
+
Add_314:0_max:
|
865 |
+
dtype: fp32
|
866 |
+
shape: [1]
|
867 |
+
location: [34443844, 4]
|
868 |
+
505:0_quant_min:
|
869 |
+
dtype: fp32
|
870 |
+
shape: [1]
|
871 |
+
location: [34443848, 4]
|
872 |
+
505:0_quant_max:
|
873 |
+
dtype: fp32
|
874 |
+
shape: [1]
|
875 |
+
location: [34443852, 4]
|
876 |
+
473:0_quant_min:
|
877 |
+
dtype: fp32
|
878 |
+
shape: [1]
|
879 |
+
location: [34443856, 4]
|
880 |
+
473:0_quant_max:
|
881 |
+
dtype: fp32
|
882 |
+
shape: [1]
|
883 |
+
location: [34443860, 4]
|
884 |
+
511:0_min:
|
885 |
+
dtype: fp32
|
886 |
+
shape: [1]
|
887 |
+
location: [34443864, 4]
|
888 |
+
511:0_max:
|
889 |
+
dtype: fp32
|
890 |
+
shape: [1]
|
891 |
+
location: [34443868, 4]
|
892 |
+
512:0_quant_min:
|
893 |
+
dtype: fp32
|
894 |
+
shape: [1]
|
895 |
+
location: [34443880, 4]
|
896 |
+
512:0_quant_max:
|
897 |
+
dtype: fp32
|
898 |
+
shape: [1]
|
899 |
+
location: [34443884, 4]
|
900 |
+
490:0_quant_min:
|
901 |
+
dtype: fp32
|
902 |
+
shape: [1]
|
903 |
+
location: [34443888, 4]
|
904 |
+
490:0_quant_max:
|
905 |
+
dtype: fp32
|
906 |
+
shape: [1]
|
907 |
+
location: [34443892, 4]
|
908 |
+
514:0_min:
|
909 |
+
dtype: fp32
|
910 |
+
shape: [1]
|
911 |
+
location: [34443896, 4]
|
912 |
+
514:0_max:
|
913 |
+
dtype: fp32
|
914 |
+
shape: [1]
|
915 |
+
location: [34443900, 4]
|
916 |
+
'624:0':
|
917 |
+
dtype: s8
|
918 |
+
shape: [256, 256]
|
919 |
+
location: [34443904, 65536]
|
920 |
+
bert.encoder.layer.3.attention.output.dense.bias:0:
|
921 |
+
dtype: s32
|
922 |
+
shape: [256]
|
923 |
+
location: [34509440, 1024]
|
924 |
+
526:0_quant_min:
|
925 |
+
dtype: fp32
|
926 |
+
shape: [1]
|
927 |
+
location: [34512512, 4]
|
928 |
+
526:0_quant_max:
|
929 |
+
dtype: fp32
|
930 |
+
shape: [1]
|
931 |
+
location: [34512516, 4]
|
932 |
+
624:0_min:
|
933 |
+
dtype: fp32
|
934 |
+
shape: [256]
|
935 |
+
location: [34510464, 1024]
|
936 |
+
624:0_max:
|
937 |
+
dtype: fp32
|
938 |
+
shape: [256]
|
939 |
+
location: [34511488, 1024]
|
940 |
+
530:0_min:
|
941 |
+
dtype: fp32
|
942 |
+
shape: [1]
|
943 |
+
location: [34512520, 4]
|
944 |
+
530:0_max:
|
945 |
+
dtype: fp32
|
946 |
+
shape: [1]
|
947 |
+
location: [34512524, 4]
|
948 |
+
bert.encoder.layer.3.attention.output.LayerNorm.weight:0:
|
949 |
+
dtype: fp32
|
950 |
+
shape: [256]
|
951 |
+
location: [34512528, 1024]
|
952 |
+
bert.encoder.layer.3.attention.output.LayerNorm.bias:0:
|
953 |
+
dtype: fp32
|
954 |
+
shape: [256]
|
955 |
+
location: [34513552, 1024]
|
956 |
+
541:0_min:
|
957 |
+
dtype: fp32
|
958 |
+
shape: [1]
|
959 |
+
location: [34514576, 4]
|
960 |
+
541:0_max:
|
961 |
+
dtype: fp32
|
962 |
+
shape: [1]
|
963 |
+
location: [34514580, 4]
|
964 |
+
'625:0':
|
965 |
+
dtype: s8
|
966 |
+
shape: [1024, 256]
|
967 |
+
location: [34514584, 262144]
|
968 |
+
bert.encoder.layer.3.intermediate.dense.bias:0:
|
969 |
+
dtype: s32
|
970 |
+
shape: [1024]
|
971 |
+
location: [34776728, 4096]
|
972 |
+
541:0_quant_min:
|
973 |
+
dtype: fp32
|
974 |
+
shape: [1]
|
975 |
+
location: [34789016, 4]
|
976 |
+
541:0_quant_max:
|
977 |
+
dtype: fp32
|
978 |
+
shape: [1]
|
979 |
+
location: [34789020, 4]
|
980 |
+
625:0_min:
|
981 |
+
dtype: fp32
|
982 |
+
shape: [1024]
|
983 |
+
location: [34780824, 4096]
|
984 |
+
625:0_max:
|
985 |
+
dtype: fp32
|
986 |
+
shape: [1024]
|
987 |
+
location: [34784920, 4096]
|
988 |
+
552:0_quant_min:
|
989 |
+
dtype: fp32
|
990 |
+
shape: [1]
|
991 |
+
location: [35054256, 4]
|
992 |
+
552:0_quant_max:
|
993 |
+
dtype: fp32
|
994 |
+
shape: [1]
|
995 |
+
location: [35054260, 4]
|
996 |
+
'626:0':
|
997 |
+
dtype: s8
|
998 |
+
shape: [256, 1024]
|
999 |
+
location: [34789040, 262144]
|
1000 |
+
bert.encoder.layer.3.output.dense.bias:0:
|
1001 |
+
dtype: s32
|
1002 |
+
shape: [256]
|
1003 |
+
location: [35051184, 1024]
|
1004 |
+
626:0_min:
|
1005 |
+
dtype: fp32
|
1006 |
+
shape: [256]
|
1007 |
+
location: [35052208, 1024]
|
1008 |
+
626:0_max:
|
1009 |
+
dtype: fp32
|
1010 |
+
shape: [256]
|
1011 |
+
location: [35053232, 1024]
|
1012 |
+
556:0_min:
|
1013 |
+
dtype: fp32
|
1014 |
+
shape: [1]
|
1015 |
+
location: [35054264, 4]
|
1016 |
+
556:0_max:
|
1017 |
+
dtype: fp32
|
1018 |
+
shape: [1]
|
1019 |
+
location: [35054268, 4]
|
1020 |
+
bert.encoder.layer.3.output.LayerNorm.weight:0:
|
1021 |
+
dtype: fp32
|
1022 |
+
shape: [256]
|
1023 |
+
location: [35054272, 1024]
|
1024 |
+
bert.encoder.layer.3.output.LayerNorm.bias:0:
|
1025 |
+
dtype: fp32
|
1026 |
+
shape: [256]
|
1027 |
+
location: [35055296, 1024]
|
1028 |
+
569:0_min:
|
1029 |
+
dtype: fp32
|
1030 |
+
shape: [1]
|
1031 |
+
location: [35056320, 4]
|
1032 |
+
569:0_max:
|
1033 |
+
dtype: fp32
|
1034 |
+
shape: [1]
|
1035 |
+
location: [35056324, 4]
|
1036 |
+
bert.pooler.dense.weight:0:
|
1037 |
+
dtype: s8
|
1038 |
+
shape: [256, 256]
|
1039 |
+
location: [35056328, 65536]
|
1040 |
+
bert.pooler.dense.bias:0:
|
1041 |
+
dtype: s32
|
1042 |
+
shape: [256]
|
1043 |
+
location: [35121864, 1024]
|
1044 |
+
569:0_quant_min:
|
1045 |
+
dtype: fp32
|
1046 |
+
shape: [1]
|
1047 |
+
location: [35122888, 4]
|
1048 |
+
569:0_quant_max:
|
1049 |
+
dtype: fp32
|
1050 |
+
shape: [1]
|
1051 |
+
location: [35122892, 4]
|
1052 |
+
bert.pooler.dense.weight:0_min:
|
1053 |
+
dtype: fp32
|
1054 |
+
shape: [256]
|
1055 |
+
location: [35122896, 1024]
|
1056 |
+
bert.pooler.dense.weight:0_max:
|
1057 |
+
dtype: fp32
|
1058 |
+
shape: [256]
|
1059 |
+
location: [35123920, 1024]
|
1060 |
+
571:0_quant_min:
|
1061 |
+
dtype: fp32
|
1062 |
+
shape: [1]
|
1063 |
+
location: [35125472, 4]
|
1064 |
+
571:0_quant_max:
|
1065 |
+
dtype: fp32
|
1066 |
+
shape: [1]
|
1067 |
+
location: [35125476, 4]
|
1068 |
+
classifier.weight:0:
|
1069 |
+
dtype: s8
|
1070 |
+
shape: [2, 256]
|
1071 |
+
location: [35124952, 512]
|
1072 |
+
classifier.bias:0:
|
1073 |
+
dtype: s32
|
1074 |
+
shape: [2]
|
1075 |
+
location: [35125464, 8]
|
1076 |
+
classifier.weight:0_min:
|
1077 |
+
dtype: fp32
|
1078 |
+
shape: [2]
|
1079 |
+
location: [35125480, 8]
|
1080 |
+
classifier.weight:0_max:
|
1081 |
+
dtype: fp32
|
1082 |
+
shape: [2]
|
1083 |
+
location: [35125488, 8]
|
1084 |
+
output:0_min:
|
1085 |
+
dtype: fp32
|
1086 |
+
shape: [1]
|
1087 |
+
location: [35125496, 4]
|
1088 |
+
output:0_max:
|
1089 |
+
dtype: fp32
|
1090 |
+
shape: [1]
|
1091 |
+
location: [35125500, 4]
|
1092 |
+
padding_sequence:
|
1093 |
+
type: PaddingSequence
|
1094 |
+
input:
|
1095 |
+
input_mask:0: {}
|
1096 |
+
output:
|
1097 |
+
padding_sequence:0: {}
|
1098 |
+
attr:
|
1099 |
+
dst_shape: -1,4,0,-1
|
1100 |
+
dims: 1
|
1101 |
+
position_embeddings/after/reshape:
|
1102 |
+
type: Reshape
|
1103 |
+
input:
|
1104 |
+
bert.embeddings.position_embeddings.weight:0: {}
|
1105 |
+
input_ids:0: {}
|
1106 |
+
output:
|
1107 |
+
position_embeddings/after/reshape:0: {}
|
1108 |
+
attr:
|
1109 |
+
dst_shape: 1,-1,256
|
1110 |
+
dims: 1
|
1111 |
+
Gather_18:
|
1112 |
+
type: Reshape
|
1113 |
+
input:
|
1114 |
+
position_embeddings/after/reshape:0: {}
|
1115 |
+
output:
|
1116 |
+
'99:0': {}
|
1117 |
+
attr:
|
1118 |
+
dst_shape: 1,-1
|
1119 |
+
word_embeddings/reshape:
|
1120 |
+
type: Reshape
|
1121 |
+
input:
|
1122 |
+
input_ids:0: {}
|
1123 |
+
output:
|
1124 |
+
word_embeddings/reshape:0: {}
|
1125 |
+
attr:
|
1126 |
+
dst_shape: -1
|
1127 |
+
Gather_15:
|
1128 |
+
type: Gather
|
1129 |
+
input:
|
1130 |
+
word_embeddings/reshape:0: {}
|
1131 |
+
bert.embeddings.word_embeddings.weight:0: {}
|
1132 |
+
output:
|
1133 |
+
Gather_15:0: {}
|
1134 |
+
attr:
|
1135 |
+
axis: 0
|
1136 |
+
batch_dims: 0
|
1137 |
+
word_embeddings/after/reshape:
|
1138 |
+
type: Reshape
|
1139 |
+
input:
|
1140 |
+
Gather_15:0: {}
|
1141 |
+
input_ids:0: {}
|
1142 |
+
output:
|
1143 |
+
word_embeddings/after/reshape:0: {}
|
1144 |
+
attr:
|
1145 |
+
dst_shape: -1,-1,256
|
1146 |
+
dims: 0,1
|
1147 |
+
word_embeddings/add_reshape:
|
1148 |
+
type: Reshape
|
1149 |
+
input:
|
1150 |
+
word_embeddings/after/reshape:0: {}
|
1151 |
+
input_ids:0: {}
|
1152 |
+
output:
|
1153 |
+
word_embeddings/add_reshape:0: {}
|
1154 |
+
attr:
|
1155 |
+
dst_shape: -1,-1,256
|
1156 |
+
dims: 0,1
|
1157 |
+
mul: 1,2
|
1158 |
+
token_type_embeddings/reshape:
|
1159 |
+
type: Reshape
|
1160 |
+
input:
|
1161 |
+
segment_ids:0: {}
|
1162 |
+
output:
|
1163 |
+
token_type_embeddings/reshape:0: {}
|
1164 |
+
attr:
|
1165 |
+
dst_shape: -1
|
1166 |
+
Gather_16:
|
1167 |
+
type: Gather
|
1168 |
+
input:
|
1169 |
+
token_type_embeddings/reshape:0: {}
|
1170 |
+
bert.embeddings.token_type_embeddings.weight:0: {}
|
1171 |
+
output:
|
1172 |
+
Gather_16:0: {}
|
1173 |
+
attr:
|
1174 |
+
axis: 0
|
1175 |
+
batch_dims: 0
|
1176 |
+
token_type_embeddings/after/reshape:
|
1177 |
+
type: Reshape
|
1178 |
+
input:
|
1179 |
+
Gather_16:0: {}
|
1180 |
+
segment_ids:0: {}
|
1181 |
+
output:
|
1182 |
+
token_type_embeddings/after/reshape:0: {}
|
1183 |
+
attr:
|
1184 |
+
dst_shape: -1,-1,256
|
1185 |
+
dims: 0,1
|
1186 |
+
token_type_embeddings/add_reshape:
|
1187 |
+
type: Reshape
|
1188 |
+
input:
|
1189 |
+
token_type_embeddings/after/reshape:0: {}
|
1190 |
+
segment_ids:0: {}
|
1191 |
+
output:
|
1192 |
+
token_type_embeddings/add_reshape:0: {}
|
1193 |
+
attr:
|
1194 |
+
dst_shape: -1,-1,256
|
1195 |
+
dims: 0,1
|
1196 |
+
mul: 1,2
|
1197 |
+
Add_17:
|
1198 |
+
type: BinaryAdd
|
1199 |
+
input:
|
1200 |
+
token_type_embeddings/add_reshape:0: {}
|
1201 |
+
'99:0': {}
|
1202 |
+
word_embeddings/add_reshape:0: {}
|
1203 |
+
output:
|
1204 |
+
Add_17:0: {}
|
1205 |
+
attr:
|
1206 |
+
append_op: sum
|
1207 |
+
embeddings/after_add_reshape:
|
1208 |
+
type: Reshape
|
1209 |
+
input:
|
1210 |
+
Add_17:0: {}
|
1211 |
+
input_ids:0: {}
|
1212 |
+
output:
|
1213 |
+
embeddings/after_add_reshape:0: {}
|
1214 |
+
attr:
|
1215 |
+
dst_shape: -1,-1,256
|
1216 |
+
dims: 0,1
|
1217 |
+
embeddings_add/reshape_2d:
|
1218 |
+
type: Reshape
|
1219 |
+
input:
|
1220 |
+
embeddings/after_add_reshape:0: {}
|
1221 |
+
output:
|
1222 |
+
embeddings_add/reshape_2d:0: {}
|
1223 |
+
attr:
|
1224 |
+
dst_shape: -1,256
|
1225 |
+
Add_30:
|
1226 |
+
type: LayerNorm
|
1227 |
+
input:
|
1228 |
+
embeddings_add/reshape_2d:0: {}
|
1229 |
+
bert.embeddings.LayerNorm.weight:0: {}
|
1230 |
+
bert.embeddings.LayerNorm.bias:0: {}
|
1231 |
+
output:
|
1232 |
+
'111:0': {}
|
1233 |
+
attr:
|
1234 |
+
epsilon: 9.999999960041972e-13
|
1235 |
+
Add_30_reorder_post:
|
1236 |
+
type: Reorder
|
1237 |
+
input:
|
1238 |
+
'111:0': {}
|
1239 |
+
output:
|
1240 |
+
111:0_reorder: {}
|
1241 |
+
attr:
|
1242 |
+
src_perm: 0,1
|
1243 |
+
dst_perm: 1,0
|
1244 |
+
Add_34_quant_0:
|
1245 |
+
type: Quantize
|
1246 |
+
input:
|
1247 |
+
111:0_reorder: {}
|
1248 |
+
111:0_min: {}
|
1249 |
+
111:0_max: {}
|
1250 |
+
output:
|
1251 |
+
111:0_quant: {}
|
1252 |
+
attr:
|
1253 |
+
output_dtype: u8
|
1254 |
+
Add_34:
|
1255 |
+
type: InnerProduct
|
1256 |
+
input:
|
1257 |
+
'576:0': {}
|
1258 |
+
111:0_quant: {}
|
1259 |
+
bert.encoder.layer.0.attention.self.key.bias:0: {}
|
1260 |
+
576:0_min: {}
|
1261 |
+
576:0_max: {}
|
1262 |
+
111:0_quant_min: {}
|
1263 |
+
111:0_quant_max: {}
|
1264 |
+
Add_34:0_min: {}
|
1265 |
+
Add_34:0_max: {}
|
1266 |
+
output:
|
1267 |
+
Add_34:0: {}
|
1268 |
+
attr:
|
1269 |
+
output_dtype: s8
|
1270 |
+
Reshape_44:
|
1271 |
+
type: Reshape
|
1272 |
+
input:
|
1273 |
+
Add_34:0: {}
|
1274 |
+
input_ids:0: {}
|
1275 |
+
output:
|
1276 |
+
131:0_quant: {}
|
1277 |
+
attr:
|
1278 |
+
dst_shape: 4,64,-1,-1
|
1279 |
+
dims: '0'
|
1280 |
+
Add_46:
|
1281 |
+
type: InnerProduct
|
1282 |
+
input:
|
1283 |
+
'579:0': {}
|
1284 |
+
111:0_quant: {}
|
1285 |
+
bert.encoder.layer.0.attention.self.value.bias:0: {}
|
1286 |
+
579:0_min: {}
|
1287 |
+
579:0_max: {}
|
1288 |
+
111:0_quant_min: {}
|
1289 |
+
111:0_quant_max: {}
|
1290 |
+
Add_46:0_min: {}
|
1291 |
+
Add_46:0_max: {}
|
1292 |
+
output:
|
1293 |
+
Add_46:0: {}
|
1294 |
+
attr:
|
1295 |
+
output_dtype: s8
|
1296 |
+
Reshape_56:
|
1297 |
+
type: Reshape
|
1298 |
+
input:
|
1299 |
+
Add_46:0: {}
|
1300 |
+
input_ids:0: {}
|
1301 |
+
output:
|
1302 |
+
148:0_quant: {}
|
1303 |
+
attr:
|
1304 |
+
dst_shape: 4,64,-1,-1
|
1305 |
+
dims: '0'
|
1306 |
+
Add_32:
|
1307 |
+
type: InnerProduct
|
1308 |
+
input:
|
1309 |
+
'575:0': {}
|
1310 |
+
111:0_quant: {}
|
1311 |
+
bert.encoder.layer.0.attention.self.query.bias:0: {}
|
1312 |
+
575:0_min: {}
|
1313 |
+
575:0_max: {}
|
1314 |
+
111:0_quant_min: {}
|
1315 |
+
111:0_quant_max: {}
|
1316 |
+
Add_32:0_min: {}
|
1317 |
+
Add_32:0_max: {}
|
1318 |
+
output:
|
1319 |
+
Add_32:0: {}
|
1320 |
+
attr:
|
1321 |
+
output_dtype: s8
|
1322 |
+
Reshape_67:
|
1323 |
+
type: Reshape
|
1324 |
+
input:
|
1325 |
+
Add_32:0: {}
|
1326 |
+
input_ids:0: {}
|
1327 |
+
output:
|
1328 |
+
163:0_quant: {}
|
1329 |
+
attr:
|
1330 |
+
dst_shape: 4,64,-1,-1
|
1331 |
+
dims: '0'
|
1332 |
+
Add_73:
|
1333 |
+
type: Matmul
|
1334 |
+
input:
|
1335 |
+
163:0_quant: {}
|
1336 |
+
131:0_quant: {}
|
1337 |
+
padding_sequence:0: {}
|
1338 |
+
163:0_quant_min: {}
|
1339 |
+
163:0_quant_max: {}
|
1340 |
+
131:0_quant_min: {}
|
1341 |
+
131:0_quant_max: {}
|
1342 |
+
169:0_min: {}
|
1343 |
+
169:0_max: {}
|
1344 |
+
output:
|
1345 |
+
'169:0': {}
|
1346 |
+
attr:
|
1347 |
+
src0_perm: 2,0,3,1
|
1348 |
+
src1_perm: 2,0,1,3
|
1349 |
+
output_scale: 0.125
|
1350 |
+
format_any: false
|
1351 |
+
append_op: binary_add
|
1352 |
+
Softmax_74:
|
1353 |
+
type: Softmax
|
1354 |
+
input:
|
1355 |
+
'169:0': {}
|
1356 |
+
170:0_quant_min: {}
|
1357 |
+
170:0_quant_max: {}
|
1358 |
+
output:
|
1359 |
+
170:0_quant: {}
|
1360 |
+
attr:
|
1361 |
+
output_dtype: u8
|
1362 |
+
Transpose_76:
|
1363 |
+
type: Matmul
|
1364 |
+
input:
|
1365 |
+
170:0_quant: {}
|
1366 |
+
148:0_quant: {}
|
1367 |
+
170:0_quant_min: {}
|
1368 |
+
170:0_quant_max: {}
|
1369 |
+
148:0_quant_min: {}
|
1370 |
+
148:0_quant_max: {}
|
1371 |
+
172:0_min: {}
|
1372 |
+
172:0_max: {}
|
1373 |
+
output:
|
1374 |
+
'172:0': {}
|
1375 |
+
attr:
|
1376 |
+
src1_perm: 2,0,3,1
|
1377 |
+
dst_perm: 1,3,0,2
|
1378 |
+
output_dtype: u8
|
1379 |
+
Reshape_86:
|
1380 |
+
type: Reshape
|
1381 |
+
input:
|
1382 |
+
'172:0': {}
|
1383 |
+
output:
|
1384 |
+
184:0_quant: {}
|
1385 |
+
attr:
|
1386 |
+
dst_shape: 256,-1
|
1387 |
+
Add_89:
|
1388 |
+
type: InnerProduct
|
1389 |
+
input:
|
1390 |
+
'585:0': {}
|
1391 |
+
184:0_quant: {}
|
1392 |
+
bert.encoder.layer.0.attention.output.dense.bias:0: {}
|
1393 |
+
111:0_reorder: {}
|
1394 |
+
585:0_min: {}
|
1395 |
+
585:0_max: {}
|
1396 |
+
184:0_quant_min: {}
|
1397 |
+
184:0_quant_max: {}
|
1398 |
+
188:0_min: {}
|
1399 |
+
188:0_max: {}
|
1400 |
+
output:
|
1401 |
+
'188:0': {}
|
1402 |
+
attr:
|
1403 |
+
append_op: sum
|
1404 |
+
Add_100:
|
1405 |
+
type: LayerNorm
|
1406 |
+
input:
|
1407 |
+
'188:0': {}
|
1408 |
+
bert.encoder.layer.0.attention.output.LayerNorm.weight:0: {}
|
1409 |
+
bert.encoder.layer.0.attention.output.LayerNorm.bias:0: {}
|
1410 |
+
output:
|
1411 |
+
'199:0': {}
|
1412 |
+
attr:
|
1413 |
+
epsilon: 9.999999960041972e-13
|
1414 |
+
transpose_mode: 1,0
|
1415 |
+
Mul_110_quant_0:
|
1416 |
+
type: Quantize
|
1417 |
+
input:
|
1418 |
+
'199:0': {}
|
1419 |
+
199:0_min: {}
|
1420 |
+
199:0_max: {}
|
1421 |
+
output:
|
1422 |
+
199:0_quant: {}
|
1423 |
+
attr:
|
1424 |
+
output_dtype: u8
|
1425 |
+
Mul_110:
|
1426 |
+
type: InnerProduct
|
1427 |
+
input:
|
1428 |
+
'586:0': {}
|
1429 |
+
199:0_quant: {}
|
1430 |
+
bert.encoder.layer.0.intermediate.dense.bias:0: {}
|
1431 |
+
586:0_min: {}
|
1432 |
+
586:0_max: {}
|
1433 |
+
199:0_quant_min: {}
|
1434 |
+
199:0_quant_max: {}
|
1435 |
+
210:0_quant_min: {}
|
1436 |
+
210:0_quant_max: {}
|
1437 |
+
output:
|
1438 |
+
210:0_quant: {}
|
1439 |
+
Mul_110_gelu:
|
1440 |
+
type: Gelu
|
1441 |
+
input:
|
1442 |
+
210:0_quant: {}
|
1443 |
+
output:
|
1444 |
+
210:0_quant_gelu: {}
|
1445 |
+
attr:
|
1446 |
+
algorithm: gelu_tanh
|
1447 |
+
Mul_110_gelu_quant:
|
1448 |
+
type: Quantize
|
1449 |
+
input:
|
1450 |
+
210:0_quant_gelu: {}
|
1451 |
+
210:0_quant_min: {}
|
1452 |
+
210:0_quant_max: {}
|
1453 |
+
output:
|
1454 |
+
210:0_quant_quant: {}
|
1455 |
+
attr:
|
1456 |
+
output_dtype: u8
|
1457 |
+
Add_113:
|
1458 |
+
type: InnerProduct
|
1459 |
+
input:
|
1460 |
+
'587:0': {}
|
1461 |
+
210:0_quant_quant: {}
|
1462 |
+
bert.encoder.layer.0.output.dense.bias:0: {}
|
1463 |
+
'199:0': {}
|
1464 |
+
587:0_min: {}
|
1465 |
+
587:0_max: {}
|
1466 |
+
210:0_quant_min: {}
|
1467 |
+
210:0_quant_max: {}
|
1468 |
+
214:0_min: {}
|
1469 |
+
214:0_max: {}
|
1470 |
+
output:
|
1471 |
+
'214:0': {}
|
1472 |
+
attr:
|
1473 |
+
append_op: sum
|
1474 |
+
Add_124:
|
1475 |
+
type: LayerNorm
|
1476 |
+
input:
|
1477 |
+
'214:0': {}
|
1478 |
+
bert.encoder.layer.0.output.LayerNorm.weight:0: {}
|
1479 |
+
bert.encoder.layer.0.output.LayerNorm.bias:0: {}
|
1480 |
+
output:
|
1481 |
+
'225:0': {}
|
1482 |
+
attr:
|
1483 |
+
epsilon: 9.999999960041972e-13
|
1484 |
+
transpose_mode: 1,0
|
1485 |
+
Add_128_quant_0:
|
1486 |
+
type: Quantize
|
1487 |
+
input:
|
1488 |
+
'225:0': {}
|
1489 |
+
225:0_min: {}
|
1490 |
+
225:0_max: {}
|
1491 |
+
output:
|
1492 |
+
225:0_quant: {}
|
1493 |
+
attr:
|
1494 |
+
output_dtype: u8
|
1495 |
+
Add_128:
|
1496 |
+
type: InnerProduct
|
1497 |
+
input:
|
1498 |
+
'589:0': {}
|
1499 |
+
225:0_quant: {}
|
1500 |
+
bert.encoder.layer.1.attention.self.key.bias:0: {}
|
1501 |
+
589:0_min: {}
|
1502 |
+
589:0_max: {}
|
1503 |
+
225:0_quant_min: {}
|
1504 |
+
225:0_quant_max: {}
|
1505 |
+
Add_128:0_min: {}
|
1506 |
+
Add_128:0_max: {}
|
1507 |
+
output:
|
1508 |
+
Add_128:0: {}
|
1509 |
+
attr:
|
1510 |
+
output_dtype: s8
|
1511 |
+
Reshape_138:
|
1512 |
+
type: Reshape
|
1513 |
+
input:
|
1514 |
+
Add_128:0: {}
|
1515 |
+
input_ids:0: {}
|
1516 |
+
output:
|
1517 |
+
245:0_quant: {}
|
1518 |
+
attr:
|
1519 |
+
dst_shape: 4,64,-1,-1
|
1520 |
+
dims: '0'
|
1521 |
+
Add_140:
|
1522 |
+
type: InnerProduct
|
1523 |
+
input:
|
1524 |
+
'592:0': {}
|
1525 |
+
225:0_quant: {}
|
1526 |
+
bert.encoder.layer.1.attention.self.value.bias:0: {}
|
1527 |
+
592:0_min: {}
|
1528 |
+
592:0_max: {}
|
1529 |
+
225:0_quant_min: {}
|
1530 |
+
225:0_quant_max: {}
|
1531 |
+
Add_140:0_min: {}
|
1532 |
+
Add_140:0_max: {}
|
1533 |
+
output:
|
1534 |
+
Add_140:0: {}
|
1535 |
+
attr:
|
1536 |
+
output_dtype: s8
|
1537 |
+
Reshape_150:
|
1538 |
+
type: Reshape
|
1539 |
+
input:
|
1540 |
+
Add_140:0: {}
|
1541 |
+
input_ids:0: {}
|
1542 |
+
output:
|
1543 |
+
262:0_quant: {}
|
1544 |
+
attr:
|
1545 |
+
dst_shape: 4,64,-1,-1
|
1546 |
+
dims: '0'
|
1547 |
+
Add_126:
|
1548 |
+
type: InnerProduct
|
1549 |
+
input:
|
1550 |
+
'588:0': {}
|
1551 |
+
225:0_quant: {}
|
1552 |
+
bert.encoder.layer.1.attention.self.query.bias:0: {}
|
1553 |
+
588:0_min: {}
|
1554 |
+
588:0_max: {}
|
1555 |
+
225:0_quant_min: {}
|
1556 |
+
225:0_quant_max: {}
|
1557 |
+
Add_126:0_min: {}
|
1558 |
+
Add_126:0_max: {}
|
1559 |
+
output:
|
1560 |
+
Add_126:0: {}
|
1561 |
+
attr:
|
1562 |
+
output_dtype: s8
|
1563 |
+
Reshape_161:
|
1564 |
+
type: Reshape
|
1565 |
+
input:
|
1566 |
+
Add_126:0: {}
|
1567 |
+
input_ids:0: {}
|
1568 |
+
output:
|
1569 |
+
277:0_quant: {}
|
1570 |
+
attr:
|
1571 |
+
dst_shape: 4,64,-1,-1
|
1572 |
+
dims: '0'
|
1573 |
+
Add_167:
|
1574 |
+
type: Matmul
|
1575 |
+
input:
|
1576 |
+
277:0_quant: {}
|
1577 |
+
245:0_quant: {}
|
1578 |
+
padding_sequence:0: {}
|
1579 |
+
277:0_quant_min: {}
|
1580 |
+
277:0_quant_max: {}
|
1581 |
+
245:0_quant_min: {}
|
1582 |
+
245:0_quant_max: {}
|
1583 |
+
283:0_min: {}
|
1584 |
+
283:0_max: {}
|
1585 |
+
output:
|
1586 |
+
'283:0': {}
|
1587 |
+
attr:
|
1588 |
+
src0_perm: 2,0,3,1
|
1589 |
+
src1_perm: 2,0,1,3
|
1590 |
+
output_scale: 0.125
|
1591 |
+
format_any: false
|
1592 |
+
append_op: binary_add
|
1593 |
+
Softmax_168:
|
1594 |
+
type: Softmax
|
1595 |
+
input:
|
1596 |
+
'283:0': {}
|
1597 |
+
284:0_quant_min: {}
|
1598 |
+
284:0_quant_max: {}
|
1599 |
+
output:
|
1600 |
+
284:0_quant: {}
|
1601 |
+
attr:
|
1602 |
+
output_dtype: u8
|
1603 |
+
Transpose_170:
|
1604 |
+
type: Matmul
|
1605 |
+
input:
|
1606 |
+
284:0_quant: {}
|
1607 |
+
262:0_quant: {}
|
1608 |
+
284:0_quant_min: {}
|
1609 |
+
284:0_quant_max: {}
|
1610 |
+
262:0_quant_min: {}
|
1611 |
+
262:0_quant_max: {}
|
1612 |
+
286:0_min: {}
|
1613 |
+
286:0_max: {}
|
1614 |
+
output:
|
1615 |
+
'286:0': {}
|
1616 |
+
attr:
|
1617 |
+
src1_perm: 2,0,3,1
|
1618 |
+
dst_perm: 1,3,0,2
|
1619 |
+
output_dtype: u8
|
1620 |
+
Reshape_180:
|
1621 |
+
type: Reshape
|
1622 |
+
input:
|
1623 |
+
'286:0': {}
|
1624 |
+
output:
|
1625 |
+
298:0_quant: {}
|
1626 |
+
attr:
|
1627 |
+
dst_shape: 256,-1
|
1628 |
+
Add_183:
|
1629 |
+
type: InnerProduct
|
1630 |
+
input:
|
1631 |
+
'598:0': {}
|
1632 |
+
298:0_quant: {}
|
1633 |
+
bert.encoder.layer.1.attention.output.dense.bias:0: {}
|
1634 |
+
'225:0': {}
|
1635 |
+
598:0_min: {}
|
1636 |
+
598:0_max: {}
|
1637 |
+
298:0_quant_min: {}
|
1638 |
+
298:0_quant_max: {}
|
1639 |
+
302:0_min: {}
|
1640 |
+
302:0_max: {}
|
1641 |
+
output:
|
1642 |
+
'302:0': {}
|
1643 |
+
attr:
|
1644 |
+
append_op: sum
|
1645 |
+
Add_194:
|
1646 |
+
type: LayerNorm
|
1647 |
+
input:
|
1648 |
+
'302:0': {}
|
1649 |
+
bert.encoder.layer.1.attention.output.LayerNorm.weight:0: {}
|
1650 |
+
bert.encoder.layer.1.attention.output.LayerNorm.bias:0: {}
|
1651 |
+
output:
|
1652 |
+
'313:0': {}
|
1653 |
+
attr:
|
1654 |
+
epsilon: 9.999999960041972e-13
|
1655 |
+
transpose_mode: 1,0
|
1656 |
+
Mul_204_quant_0:
|
1657 |
+
type: Quantize
|
1658 |
+
input:
|
1659 |
+
'313:0': {}
|
1660 |
+
313:0_min: {}
|
1661 |
+
313:0_max: {}
|
1662 |
+
output:
|
1663 |
+
313:0_quant: {}
|
1664 |
+
attr:
|
1665 |
+
output_dtype: u8
|
1666 |
+
Mul_204:
|
1667 |
+
type: InnerProduct
|
1668 |
+
input:
|
1669 |
+
'599:0': {}
|
1670 |
+
313:0_quant: {}
|
1671 |
+
bert.encoder.layer.1.intermediate.dense.bias:0: {}
|
1672 |
+
599:0_min: {}
|
1673 |
+
599:0_max: {}
|
1674 |
+
313:0_quant_min: {}
|
1675 |
+
313:0_quant_max: {}
|
1676 |
+
324:0_quant_min: {}
|
1677 |
+
324:0_quant_max: {}
|
1678 |
+
output:
|
1679 |
+
324:0_quant: {}
|
1680 |
+
Mul_204_gelu:
|
1681 |
+
type: Gelu
|
1682 |
+
input:
|
1683 |
+
324:0_quant: {}
|
1684 |
+
output:
|
1685 |
+
324:0_quant_gelu: {}
|
1686 |
+
attr:
|
1687 |
+
algorithm: gelu_tanh
|
1688 |
+
Mul_204_gelu_quant:
|
1689 |
+
type: Quantize
|
1690 |
+
input:
|
1691 |
+
324:0_quant_gelu: {}
|
1692 |
+
324:0_quant_min: {}
|
1693 |
+
324:0_quant_max: {}
|
1694 |
+
output:
|
1695 |
+
324:0_quant_quant: {}
|
1696 |
+
attr:
|
1697 |
+
output_dtype: u8
|
1698 |
+
Add_207:
|
1699 |
+
type: InnerProduct
|
1700 |
+
input:
|
1701 |
+
'600:0': {}
|
1702 |
+
324:0_quant_quant: {}
|
1703 |
+
bert.encoder.layer.1.output.dense.bias:0: {}
|
1704 |
+
'313:0': {}
|
1705 |
+
600:0_min: {}
|
1706 |
+
600:0_max: {}
|
1707 |
+
324:0_quant_min: {}
|
1708 |
+
324:0_quant_max: {}
|
1709 |
+
328:0_min: {}
|
1710 |
+
328:0_max: {}
|
1711 |
+
output:
|
1712 |
+
'328:0': {}
|
1713 |
+
attr:
|
1714 |
+
append_op: sum
|
1715 |
+
Add_218:
|
1716 |
+
type: LayerNorm
|
1717 |
+
input:
|
1718 |
+
'328:0': {}
|
1719 |
+
bert.encoder.layer.1.output.LayerNorm.weight:0: {}
|
1720 |
+
bert.encoder.layer.1.output.LayerNorm.bias:0: {}
|
1721 |
+
output:
|
1722 |
+
'339:0': {}
|
1723 |
+
attr:
|
1724 |
+
epsilon: 9.999999960041972e-13
|
1725 |
+
transpose_mode: 1,0
|
1726 |
+
Add_222_quant_0:
|
1727 |
+
type: Quantize
|
1728 |
+
input:
|
1729 |
+
'339:0': {}
|
1730 |
+
339:0_min: {}
|
1731 |
+
339:0_max: {}
|
1732 |
+
output:
|
1733 |
+
339:0_quant: {}
|
1734 |
+
attr:
|
1735 |
+
output_dtype: u8
|
1736 |
+
Add_222:
|
1737 |
+
type: InnerProduct
|
1738 |
+
input:
|
1739 |
+
'602:0': {}
|
1740 |
+
339:0_quant: {}
|
1741 |
+
bert.encoder.layer.2.attention.self.key.bias:0: {}
|
1742 |
+
602:0_min: {}
|
1743 |
+
602:0_max: {}
|
1744 |
+
339:0_quant_min: {}
|
1745 |
+
339:0_quant_max: {}
|
1746 |
+
Add_222:0_min: {}
|
1747 |
+
Add_222:0_max: {}
|
1748 |
+
output:
|
1749 |
+
Add_222:0: {}
|
1750 |
+
attr:
|
1751 |
+
output_dtype: s8
|
1752 |
+
Reshape_232:
|
1753 |
+
type: Reshape
|
1754 |
+
input:
|
1755 |
+
Add_222:0: {}
|
1756 |
+
input_ids:0: {}
|
1757 |
+
output:
|
1758 |
+
359:0_quant: {}
|
1759 |
+
attr:
|
1760 |
+
dst_shape: 4,64,-1,-1
|
1761 |
+
dims: '0'
|
1762 |
+
Add_234:
|
1763 |
+
type: InnerProduct
|
1764 |
+
input:
|
1765 |
+
'605:0': {}
|
1766 |
+
339:0_quant: {}
|
1767 |
+
bert.encoder.layer.2.attention.self.value.bias:0: {}
|
1768 |
+
605:0_min: {}
|
1769 |
+
605:0_max: {}
|
1770 |
+
339:0_quant_min: {}
|
1771 |
+
339:0_quant_max: {}
|
1772 |
+
Add_234:0_min: {}
|
1773 |
+
Add_234:0_max: {}
|
1774 |
+
output:
|
1775 |
+
Add_234:0: {}
|
1776 |
+
attr:
|
1777 |
+
output_dtype: s8
|
1778 |
+
Reshape_244:
|
1779 |
+
type: Reshape
|
1780 |
+
input:
|
1781 |
+
Add_234:0: {}
|
1782 |
+
input_ids:0: {}
|
1783 |
+
output:
|
1784 |
+
376:0_quant: {}
|
1785 |
+
attr:
|
1786 |
+
dst_shape: 4,64,-1,-1
|
1787 |
+
dims: '0'
|
1788 |
+
Add_220:
|
1789 |
+
type: InnerProduct
|
1790 |
+
input:
|
1791 |
+
'601:0': {}
|
1792 |
+
339:0_quant: {}
|
1793 |
+
bert.encoder.layer.2.attention.self.query.bias:0: {}
|
1794 |
+
601:0_min: {}
|
1795 |
+
601:0_max: {}
|
1796 |
+
339:0_quant_min: {}
|
1797 |
+
339:0_quant_max: {}
|
1798 |
+
Add_220:0_min: {}
|
1799 |
+
Add_220:0_max: {}
|
1800 |
+
output:
|
1801 |
+
Add_220:0: {}
|
1802 |
+
attr:
|
1803 |
+
output_dtype: s8
|
1804 |
+
Reshape_255:
|
1805 |
+
type: Reshape
|
1806 |
+
input:
|
1807 |
+
Add_220:0: {}
|
1808 |
+
input_ids:0: {}
|
1809 |
+
output:
|
1810 |
+
391:0_quant: {}
|
1811 |
+
attr:
|
1812 |
+
dst_shape: 4,64,-1,-1
|
1813 |
+
dims: '0'
|
1814 |
+
Add_261:
|
1815 |
+
type: Matmul
|
1816 |
+
input:
|
1817 |
+
391:0_quant: {}
|
1818 |
+
359:0_quant: {}
|
1819 |
+
padding_sequence:0: {}
|
1820 |
+
391:0_quant_min: {}
|
1821 |
+
391:0_quant_max: {}
|
1822 |
+
359:0_quant_min: {}
|
1823 |
+
359:0_quant_max: {}
|
1824 |
+
397:0_min: {}
|
1825 |
+
397:0_max: {}
|
1826 |
+
output:
|
1827 |
+
'397:0': {}
|
1828 |
+
attr:
|
1829 |
+
src0_perm: 2,0,3,1
|
1830 |
+
src1_perm: 2,0,1,3
|
1831 |
+
output_scale: 0.125
|
1832 |
+
format_any: false
|
1833 |
+
append_op: binary_add
|
1834 |
+
Softmax_262:
|
1835 |
+
type: Softmax
|
1836 |
+
input:
|
1837 |
+
'397:0': {}
|
1838 |
+
398:0_quant_min: {}
|
1839 |
+
398:0_quant_max: {}
|
1840 |
+
output:
|
1841 |
+
398:0_quant: {}
|
1842 |
+
attr:
|
1843 |
+
output_dtype: u8
|
1844 |
+
Transpose_264:
|
1845 |
+
type: Matmul
|
1846 |
+
input:
|
1847 |
+
398:0_quant: {}
|
1848 |
+
376:0_quant: {}
|
1849 |
+
398:0_quant_min: {}
|
1850 |
+
398:0_quant_max: {}
|
1851 |
+
376:0_quant_min: {}
|
1852 |
+
376:0_quant_max: {}
|
1853 |
+
400:0_min: {}
|
1854 |
+
400:0_max: {}
|
1855 |
+
output:
|
1856 |
+
'400:0': {}
|
1857 |
+
attr:
|
1858 |
+
src1_perm: 2,0,3,1
|
1859 |
+
dst_perm: 1,3,0,2
|
1860 |
+
output_dtype: u8
|
1861 |
+
Reshape_274:
|
1862 |
+
type: Reshape
|
1863 |
+
input:
|
1864 |
+
'400:0': {}
|
1865 |
+
output:
|
1866 |
+
412:0_quant: {}
|
1867 |
+
attr:
|
1868 |
+
dst_shape: 256,-1
|
1869 |
+
Add_277:
|
1870 |
+
type: InnerProduct
|
1871 |
+
input:
|
1872 |
+
'611:0': {}
|
1873 |
+
412:0_quant: {}
|
1874 |
+
bert.encoder.layer.2.attention.output.dense.bias:0: {}
|
1875 |
+
'339:0': {}
|
1876 |
+
611:0_min: {}
|
1877 |
+
611:0_max: {}
|
1878 |
+
412:0_quant_min: {}
|
1879 |
+
412:0_quant_max: {}
|
1880 |
+
416:0_min: {}
|
1881 |
+
416:0_max: {}
|
1882 |
+
output:
|
1883 |
+
'416:0': {}
|
1884 |
+
attr:
|
1885 |
+
append_op: sum
|
1886 |
+
Add_288:
|
1887 |
+
type: LayerNorm
|
1888 |
+
input:
|
1889 |
+
'416:0': {}
|
1890 |
+
bert.encoder.layer.2.attention.output.LayerNorm.weight:0: {}
|
1891 |
+
bert.encoder.layer.2.attention.output.LayerNorm.bias:0: {}
|
1892 |
+
output:
|
1893 |
+
'427:0': {}
|
1894 |
+
attr:
|
1895 |
+
epsilon: 9.999999960041972e-13
|
1896 |
+
transpose_mode: 1,0
|
1897 |
+
Mul_298_quant_0:
|
1898 |
+
type: Quantize
|
1899 |
+
input:
|
1900 |
+
'427:0': {}
|
1901 |
+
427:0_min: {}
|
1902 |
+
427:0_max: {}
|
1903 |
+
output:
|
1904 |
+
427:0_quant: {}
|
1905 |
+
attr:
|
1906 |
+
output_dtype: u8
|
1907 |
+
Mul_298:
|
1908 |
+
type: InnerProduct
|
1909 |
+
input:
|
1910 |
+
'612:0': {}
|
1911 |
+
427:0_quant: {}
|
1912 |
+
bert.encoder.layer.2.intermediate.dense.bias:0: {}
|
1913 |
+
612:0_min: {}
|
1914 |
+
612:0_max: {}
|
1915 |
+
427:0_quant_min: {}
|
1916 |
+
427:0_quant_max: {}
|
1917 |
+
438:0_quant_min: {}
|
1918 |
+
438:0_quant_max: {}
|
1919 |
+
output:
|
1920 |
+
438:0_quant: {}
|
1921 |
+
Mul_298_gelu:
|
1922 |
+
type: Gelu
|
1923 |
+
input:
|
1924 |
+
438:0_quant: {}
|
1925 |
+
output:
|
1926 |
+
438:0_quant_gelu: {}
|
1927 |
+
attr:
|
1928 |
+
algorithm: gelu_tanh
|
1929 |
+
Mul_298_gelu_quant:
|
1930 |
+
type: Quantize
|
1931 |
+
input:
|
1932 |
+
438:0_quant_gelu: {}
|
1933 |
+
438:0_quant_min: {}
|
1934 |
+
438:0_quant_max: {}
|
1935 |
+
output:
|
1936 |
+
438:0_quant_quant: {}
|
1937 |
+
attr:
|
1938 |
+
output_dtype: u8
|
1939 |
+
Add_301:
|
1940 |
+
type: InnerProduct
|
1941 |
+
input:
|
1942 |
+
'613:0': {}
|
1943 |
+
438:0_quant_quant: {}
|
1944 |
+
bert.encoder.layer.2.output.dense.bias:0: {}
|
1945 |
+
'427:0': {}
|
1946 |
+
613:0_min: {}
|
1947 |
+
613:0_max: {}
|
1948 |
+
438:0_quant_min: {}
|
1949 |
+
438:0_quant_max: {}
|
1950 |
+
442:0_min: {}
|
1951 |
+
442:0_max: {}
|
1952 |
+
output:
|
1953 |
+
'442:0': {}
|
1954 |
+
attr:
|
1955 |
+
append_op: sum
|
1956 |
+
Add_312:
|
1957 |
+
type: LayerNorm
|
1958 |
+
input:
|
1959 |
+
'442:0': {}
|
1960 |
+
bert.encoder.layer.2.output.LayerNorm.weight:0: {}
|
1961 |
+
bert.encoder.layer.2.output.LayerNorm.bias:0: {}
|
1962 |
+
output:
|
1963 |
+
'453:0': {}
|
1964 |
+
attr:
|
1965 |
+
epsilon: 9.999999960041972e-13
|
1966 |
+
transpose_mode: 1,0
|
1967 |
+
Add_316_quant_0:
|
1968 |
+
type: Quantize
|
1969 |
+
input:
|
1970 |
+
'453:0': {}
|
1971 |
+
453:0_min: {}
|
1972 |
+
453:0_max: {}
|
1973 |
+
output:
|
1974 |
+
453:0_quant: {}
|
1975 |
+
attr:
|
1976 |
+
output_dtype: u8
|
1977 |
+
Add_316:
|
1978 |
+
type: InnerProduct
|
1979 |
+
input:
|
1980 |
+
'615:0': {}
|
1981 |
+
453:0_quant: {}
|
1982 |
+
bert.encoder.layer.3.attention.self.key.bias:0: {}
|
1983 |
+
615:0_min: {}
|
1984 |
+
615:0_max: {}
|
1985 |
+
453:0_quant_min: {}
|
1986 |
+
453:0_quant_max: {}
|
1987 |
+
Add_316:0_min: {}
|
1988 |
+
Add_316:0_max: {}
|
1989 |
+
output:
|
1990 |
+
Add_316:0: {}
|
1991 |
+
attr:
|
1992 |
+
output_dtype: s8
|
1993 |
+
Reshape_326:
|
1994 |
+
type: Reshape
|
1995 |
+
input:
|
1996 |
+
Add_316:0: {}
|
1997 |
+
input_ids:0: {}
|
1998 |
+
output:
|
1999 |
+
473:0_quant: {}
|
2000 |
+
attr:
|
2001 |
+
dst_shape: 4,64,-1,-1
|
2002 |
+
dims: '0'
|
2003 |
+
Add_328:
|
2004 |
+
type: InnerProduct
|
2005 |
+
input:
|
2006 |
+
'618:0': {}
|
2007 |
+
453:0_quant: {}
|
2008 |
+
bert.encoder.layer.3.attention.self.value.bias:0: {}
|
2009 |
+
618:0_min: {}
|
2010 |
+
618:0_max: {}
|
2011 |
+
453:0_quant_min: {}
|
2012 |
+
453:0_quant_max: {}
|
2013 |
+
Add_328:0_min: {}
|
2014 |
+
Add_328:0_max: {}
|
2015 |
+
output:
|
2016 |
+
Add_328:0: {}
|
2017 |
+
attr:
|
2018 |
+
output_dtype: s8
|
2019 |
+
Reshape_338:
|
2020 |
+
type: Reshape
|
2021 |
+
input:
|
2022 |
+
Add_328:0: {}
|
2023 |
+
input_ids:0: {}
|
2024 |
+
output:
|
2025 |
+
490:0_quant: {}
|
2026 |
+
attr:
|
2027 |
+
dst_shape: 4,64,-1,-1
|
2028 |
+
dims: '0'
|
2029 |
+
Add_314:
|
2030 |
+
type: InnerProduct
|
2031 |
+
input:
|
2032 |
+
'614:0': {}
|
2033 |
+
453:0_quant: {}
|
2034 |
+
bert.encoder.layer.3.attention.self.query.bias:0: {}
|
2035 |
+
614:0_min: {}
|
2036 |
+
614:0_max: {}
|
2037 |
+
453:0_quant_min: {}
|
2038 |
+
453:0_quant_max: {}
|
2039 |
+
Add_314:0_min: {}
|
2040 |
+
Add_314:0_max: {}
|
2041 |
+
output:
|
2042 |
+
Add_314:0: {}
|
2043 |
+
attr:
|
2044 |
+
output_dtype: s8
|
2045 |
+
Reshape_349:
|
2046 |
+
type: Reshape
|
2047 |
+
input:
|
2048 |
+
Add_314:0: {}
|
2049 |
+
input_ids:0: {}
|
2050 |
+
output:
|
2051 |
+
505:0_quant: {}
|
2052 |
+
attr:
|
2053 |
+
dst_shape: 4,64,-1,-1
|
2054 |
+
dims: '0'
|
2055 |
+
Add_355:
|
2056 |
+
type: Matmul
|
2057 |
+
input:
|
2058 |
+
505:0_quant: {}
|
2059 |
+
473:0_quant: {}
|
2060 |
+
padding_sequence:0: {}
|
2061 |
+
505:0_quant_min: {}
|
2062 |
+
505:0_quant_max: {}
|
2063 |
+
473:0_quant_min: {}
|
2064 |
+
473:0_quant_max: {}
|
2065 |
+
511:0_min: {}
|
2066 |
+
511:0_max: {}
|
2067 |
+
output:
|
2068 |
+
'511:0': {}
|
2069 |
+
attr:
|
2070 |
+
src0_perm: 2,0,3,1
|
2071 |
+
src1_perm: 2,0,1,3
|
2072 |
+
output_scale: 0.125
|
2073 |
+
format_any: false
|
2074 |
+
append_op: binary_add
|
2075 |
+
Softmax_356:
|
2076 |
+
type: Softmax
|
2077 |
+
input:
|
2078 |
+
'511:0': {}
|
2079 |
+
512:0_quant_min: {}
|
2080 |
+
512:0_quant_max: {}
|
2081 |
+
output:
|
2082 |
+
512:0_quant: {}
|
2083 |
+
attr:
|
2084 |
+
output_dtype: u8
|
2085 |
+
Transpose_358:
|
2086 |
+
type: Matmul
|
2087 |
+
input:
|
2088 |
+
512:0_quant: {}
|
2089 |
+
490:0_quant: {}
|
2090 |
+
512:0_quant_min: {}
|
2091 |
+
512:0_quant_max: {}
|
2092 |
+
490:0_quant_min: {}
|
2093 |
+
490:0_quant_max: {}
|
2094 |
+
514:0_min: {}
|
2095 |
+
514:0_max: {}
|
2096 |
+
output:
|
2097 |
+
'514:0': {}
|
2098 |
+
attr:
|
2099 |
+
src1_perm: 2,0,3,1
|
2100 |
+
dst_perm: 1,3,0,2
|
2101 |
+
output_dtype: u8
|
2102 |
+
Reshape_368:
|
2103 |
+
type: Reshape
|
2104 |
+
input:
|
2105 |
+
'514:0': {}
|
2106 |
+
output:
|
2107 |
+
526:0_quant: {}
|
2108 |
+
attr:
|
2109 |
+
dst_shape: 256,-1
|
2110 |
+
Add_371:
|
2111 |
+
type: InnerProduct
|
2112 |
+
input:
|
2113 |
+
'624:0': {}
|
2114 |
+
526:0_quant: {}
|
2115 |
+
bert.encoder.layer.3.attention.output.dense.bias:0: {}
|
2116 |
+
'453:0': {}
|
2117 |
+
624:0_min: {}
|
2118 |
+
624:0_max: {}
|
2119 |
+
526:0_quant_min: {}
|
2120 |
+
526:0_quant_max: {}
|
2121 |
+
530:0_min: {}
|
2122 |
+
530:0_max: {}
|
2123 |
+
output:
|
2124 |
+
'530:0': {}
|
2125 |
+
attr:
|
2126 |
+
append_op: sum
|
2127 |
+
Add_382:
|
2128 |
+
type: LayerNorm
|
2129 |
+
input:
|
2130 |
+
'530:0': {}
|
2131 |
+
bert.encoder.layer.3.attention.output.LayerNorm.weight:0: {}
|
2132 |
+
bert.encoder.layer.3.attention.output.LayerNorm.bias:0: {}
|
2133 |
+
output:
|
2134 |
+
'541:0': {}
|
2135 |
+
attr:
|
2136 |
+
epsilon: 9.999999960041972e-13
|
2137 |
+
transpose_mode: 1,0
|
2138 |
+
Mul_392_quant_0:
|
2139 |
+
type: Quantize
|
2140 |
+
input:
|
2141 |
+
'541:0': {}
|
2142 |
+
541:0_min: {}
|
2143 |
+
541:0_max: {}
|
2144 |
+
output:
|
2145 |
+
541:0_quant: {}
|
2146 |
+
attr:
|
2147 |
+
output_dtype: u8
|
2148 |
+
Mul_392:
|
2149 |
+
type: InnerProduct
|
2150 |
+
input:
|
2151 |
+
'625:0': {}
|
2152 |
+
541:0_quant: {}
|
2153 |
+
bert.encoder.layer.3.intermediate.dense.bias:0: {}
|
2154 |
+
625:0_min: {}
|
2155 |
+
625:0_max: {}
|
2156 |
+
541:0_quant_min: {}
|
2157 |
+
541:0_quant_max: {}
|
2158 |
+
552:0_quant_min: {}
|
2159 |
+
552:0_quant_max: {}
|
2160 |
+
output:
|
2161 |
+
552:0_quant: {}
|
2162 |
+
Mul_392_gelu:
|
2163 |
+
type: Gelu
|
2164 |
+
input:
|
2165 |
+
552:0_quant: {}
|
2166 |
+
output:
|
2167 |
+
552:0_quant_gelu: {}
|
2168 |
+
attr:
|
2169 |
+
algorithm: gelu_tanh
|
2170 |
+
Mul_392_gelu_quant:
|
2171 |
+
type: Quantize
|
2172 |
+
input:
|
2173 |
+
552:0_quant_gelu: {}
|
2174 |
+
552:0_quant_min: {}
|
2175 |
+
552:0_quant_max: {}
|
2176 |
+
output:
|
2177 |
+
552:0_quant_quant: {}
|
2178 |
+
attr:
|
2179 |
+
output_dtype: u8
|
2180 |
+
Add_395:
|
2181 |
+
type: InnerProduct
|
2182 |
+
input:
|
2183 |
+
'626:0': {}
|
2184 |
+
552:0_quant_quant: {}
|
2185 |
+
bert.encoder.layer.3.output.dense.bias:0: {}
|
2186 |
+
'541:0': {}
|
2187 |
+
626:0_min: {}
|
2188 |
+
626:0_max: {}
|
2189 |
+
552:0_quant_min: {}
|
2190 |
+
552:0_quant_max: {}
|
2191 |
+
556:0_min: {}
|
2192 |
+
556:0_max: {}
|
2193 |
+
output:
|
2194 |
+
'556:0': {}
|
2195 |
+
attr:
|
2196 |
+
append_op: sum
|
2197 |
+
Add_406_reorder_pre:
|
2198 |
+
type: Reorder
|
2199 |
+
input:
|
2200 |
+
'556:0': {}
|
2201 |
+
output:
|
2202 |
+
556:0_reorder: {}
|
2203 |
+
attr:
|
2204 |
+
src_perm: 0,1
|
2205 |
+
dst_perm: 1,0
|
2206 |
+
Add_406:
|
2207 |
+
type: LayerNorm
|
2208 |
+
input:
|
2209 |
+
556:0_reorder: {}
|
2210 |
+
bert.encoder.layer.3.output.LayerNorm.weight:0: {}
|
2211 |
+
bert.encoder.layer.3.output.LayerNorm.bias:0: {}
|
2212 |
+
output:
|
2213 |
+
Add_406:0: {}
|
2214 |
+
attr:
|
2215 |
+
epsilon: 9.999999960041972e-13
|
2216 |
+
last_layer_reshape:
|
2217 |
+
type: Reshape
|
2218 |
+
input:
|
2219 |
+
Add_406:0: {}
|
2220 |
+
input_ids:0: {}
|
2221 |
+
output:
|
2222 |
+
last_layer_reshape:0: {}
|
2223 |
+
attr:
|
2224 |
+
dst_shape: -1,-1,256
|
2225 |
+
dims: 0,1
|
2226 |
+
last_layer_strided_slice:
|
2227 |
+
type: StridedSlice
|
2228 |
+
input:
|
2229 |
+
last_layer_reshape:0: {}
|
2230 |
+
output:
|
2231 |
+
last_layer_strided_slice:0: {}
|
2232 |
+
attr:
|
2233 |
+
begin_mask: 5
|
2234 |
+
ellipsis_mask: 0
|
2235 |
+
end_mask: 5
|
2236 |
+
new_axis_mask: 0
|
2237 |
+
shrink_axis_mask: 0
|
2238 |
+
begin: 0,0,0
|
2239 |
+
end: 0,1,0
|
2240 |
+
strides: 1,1,1
|
2241 |
+
Gather_408:
|
2242 |
+
type: Reshape
|
2243 |
+
input:
|
2244 |
+
last_layer_strided_slice:0: {}
|
2245 |
+
output:
|
2246 |
+
'569:0': {}
|
2247 |
+
attr:
|
2248 |
+
dst_shape: -1,256
|
2249 |
+
Tanh_410_quant_0:
|
2250 |
+
type: Quantize
|
2251 |
+
input:
|
2252 |
+
'569:0': {}
|
2253 |
+
569:0_min: {}
|
2254 |
+
569:0_max: {}
|
2255 |
+
output:
|
2256 |
+
569:0_quant: {}
|
2257 |
+
attr:
|
2258 |
+
output_dtype: u8
|
2259 |
+
Tanh_410:
|
2260 |
+
type: InnerProduct
|
2261 |
+
input:
|
2262 |
+
569:0_quant: {}
|
2263 |
+
bert.pooler.dense.weight:0: {}
|
2264 |
+
bert.pooler.dense.bias:0: {}
|
2265 |
+
569:0_quant_min: {}
|
2266 |
+
569:0_quant_max: {}
|
2267 |
+
bert.pooler.dense.weight:0_min: {}
|
2268 |
+
bert.pooler.dense.weight:0_max: {}
|
2269 |
+
571:0_quant_min: {}
|
2270 |
+
571:0_quant_max: {}
|
2271 |
+
output:
|
2272 |
+
571:0_quant: {}
|
2273 |
+
attr:
|
2274 |
+
src1_perm: 0,1
|
2275 |
+
append_op: tanh
|
2276 |
+
output_dtype: u8
|
2277 |
+
Gemm_411:
|
2278 |
+
type: InnerProduct
|
2279 |
+
input:
|
2280 |
+
571:0_quant: {}
|
2281 |
+
classifier.weight:0: {}
|
2282 |
+
classifier.bias:0: {}
|
2283 |
+
571:0_quant_min: {}
|
2284 |
+
571:0_quant_max: {}
|
2285 |
+
classifier.weight:0_min: {}
|
2286 |
+
classifier.weight:0_max: {}
|
2287 |
+
output:0_min: {}
|
2288 |
+
output:0_max: {}
|
2289 |
+
output:
|
2290 |
+
output:0: {}
|
2291 |
+
attr:
|
2292 |
+
src1_perm: 0,1out
|
2293 |
+
output_data:
|
2294 |
+
type: Output
|
2295 |
+
input:
|
2296 |
+
output:0: {}
|
2297 |
+
#'199:0': {}
|
2298 |
+
#'188:0': {}
|
2299 |
+
#184:0_quant: {}
|
Neural_Engine_INT8_IR/model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65046bc15bbc90be9917710793edf85d92dcfd1df7bea5da2c9969fd17327ae4
|
3 |
+
size 35125504
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# Sparse BERT mini model (uncased)
|
6 |
+
|
7 |
+
Finetuned model pruned to 1:4 structured sparsity.
|
8 |
+
The model is a pruned version of the [BERT mini model](https://huggingface.co/prajjwal1/bert-mini).
|
9 |
+
|
10 |
+
## Intended Use
|
11 |
+
|
12 |
+
The model can be used for inference with sparsity optimisztion.
|
13 |
+
For further details on the model and its usage, see our repo and our implementation available [here](https://github.com/intel-innersource/frameworks.ai.nlp-toolkit.intel-nlp-toolkit).
|
14 |
+
We also upload the quanted int8 BERT mini sparse Neural Engine IR (acc 87.15) here, could be directly used by NLP Toolkit ref inference.
|
15 |
+
|
16 |
+
## Evaluation Results
|
17 |
+
We get the following results on the sst2 tasks development set:
|
18 |
+
|
19 |
+
| Task | SST-2 (Acc) |
|
20 |
+
|------|-------------|
|
21 |
+
| | 87.2 |
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Intel/bert-mini-sst2-distilled-sparse-90-1X4-block",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"finetuning_task": "sst2",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 256,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 1024,
|
18 |
+
"label2id": {
|
19 |
+
"0": 0,
|
20 |
+
"1": 1
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 4,
|
26 |
+
"num_hidden_layers": 4,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"problem_type": "single_label_classification",
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.16.0",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3faaf7afce1767fab009b3dd9c095ff0495217d350f04a804a565bad25b9ab5
|
3 |
+
size 44717063
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "google/bert_uncased_L-4_H-256_A-4", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|