estellea sayakpaul HF staff commited on
Commit
97928f7
·
1 Parent(s): 6d4c904

Update README.md to imrove the tags and other minor things (#1)

Browse files

- Update README.md (256bb60a33d3232480699d16d259bfeb71ca6abb)


Co-authored-by: Sayak Paul <sayakpaul@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +13 -8
README.md CHANGED
@@ -1,6 +1,11 @@
1
  ---
 
2
  datasets:
3
  - laion/laion400m
 
 
 
 
4
  language:
5
  - en
6
  ---
@@ -22,7 +27,7 @@ This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that genera
22
  ## Intended uses
23
 
24
  You can use this model to generate RGB and depth map given a text prompt.
25
- A short video summarizing the approach can be found at [this url](https://t.ly/tdi2) and a VR demo can be found [here](https://www.youtube.com/watch?v=3hbUo-hwAs0)
26
 
27
 
28
  ### How to use
@@ -47,7 +52,7 @@ depth_image[0].save(name+"_ldm3d_depth.png")
47
  ### Limitations and bias
48
 
49
  For the image generation, limitations and bias are the same as the ones from [Stable diffusion](https://huggingface.co/CompVis/stable-diffusion-v1-4#limitations)
50
- For the depth map generation, limitations and bias are the same as the ones from [DPT](https://huggingface.co/Intel/dpt-large)
51
 
52
 
53
  ## Training data
@@ -67,11 +72,11 @@ The figure below shows some qualitative results comparing our method with (Stabl
67
  ### BibTeX entry and citation info
68
  ```bibtex
69
  @misc{stan2023ldm3d,
70
- title={LDM3D: Latent Diffusion Model for 3D},
71
- author={Gabriela Ben Melech Stan and Diana Wofk and Scottie Fox and Alex Redden and Will Saxton and Jean Yu and Estelle Aflalo and Shao-Yen Tseng and Fabio Nonato and Matthias Muller and Vasudev Lal},
72
- year={2023},
73
- eprint={2305.10853},
74
- archivePrefix={arXiv},
75
- primaryClass={cs.CV}
76
  }
77
  ```
 
1
  ---
2
+ license: creativeml-openrail-m
3
  datasets:
4
  - laion/laion400m
5
+ tags:
6
+ - stable-diffusion
7
+ - stable-diffusion-diffusers
8
+ - text-to-image
9
  language:
10
  - en
11
  ---
 
27
  ## Intended uses
28
 
29
  You can use this model to generate RGB and depth map given a text prompt.
30
+ A short video summarizing the approach can be found at [this url](https://t.ly/tdi2) and a VR demo can be found [here](https://www.youtube.com/watch?v=3hbUo-hwAs0).
31
 
32
 
33
  ### How to use
 
52
  ### Limitations and bias
53
 
54
  For the image generation, limitations and bias are the same as the ones from [Stable diffusion](https://huggingface.co/CompVis/stable-diffusion-v1-4#limitations)
55
+ For the depth map generation, limitations and bias are the same as the ones from [DPT](https://huggingface.co/Intel/dpt-large).
56
 
57
 
58
  ## Training data
 
72
  ### BibTeX entry and citation info
73
  ```bibtex
74
  @misc{stan2023ldm3d,
75
+ title={LDM3D: Latent Diffusion Model for 3D},
76
+ author={Gabriela Ben Melech Stan and Diana Wofk and Scottie Fox and Alex Redden and Will Saxton and Jean Yu and Estelle Aflalo and Shao-Yen Tseng and Fabio Nonato and Matthias Muller and Vasudev Lal},
77
+ year={2023},
78
+ eprint={2305.10853},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.CV}
81
  }
82
  ```