File size: 994 Bytes
719ffc1
 
8858d8a
 
 
928ebf2
f7c4dfd
8858d8a
 
 
 
719ffc1
8858d8a
 
 
 
 
f7c4dfd
8858d8a
 
 
 
 
 
 
 
 
 
 
 
f7c4dfd
8858d8a
 
2f02c5e
 
 
 
8858d8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: apache-2.0
tags:
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingDynamic
datasets: 
- mnli
metrics:
- accuracy
---

# INT8 T5 small finetuned on XSum

### Post-training dynamic quantization

This is an INT8  PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). 

The original fp32 model comes from the fine-tuned model [adasnew/t5-small-xsum](https://huggingface.co/adasnew/t5-small-xsum).

The linear modules **lm.head**, fall back to fp32 for less than 1% relative accuracy loss.

### Evaluation result

|   |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-rouge1)** | 29.9008 |29.9592|
| **Model size**  |154M|242M|

### Load with optimum:

```python
from optimum.intel import INCModelForSeq2SeqLM

model_id = "Intel/t5-small-xsum-int8-dynamic-inc"
int8_model = INCModelForSeq2SeqLM.from_pretrained(model_id)
```