English
jinjieyuan commited on
Commit
a7fd78b
·
verified ·
1 Parent(s): c3376d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -86
README.md CHANGED
@@ -1,86 +1,103 @@
1
- ---
2
- language: en
3
- license: apache-2.0
4
- datasets:
5
- - nyu-mll/glue
6
- ---
7
-
8
- # LoNAS Model Card: lonas-bert-base-glue
9
-
10
- The super-networks fine-tuned on BERT-base with [GLUE benchmark](https://gluebenchmark.com/) using LoNAS.
11
-
12
- ## Model Details
13
-
14
- ### Information
15
-
16
- - **Model name:** lonas-bert-base-glue
17
- - **Base model:** [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
18
- - **Subnetwork version:** Super-network
19
- - **NNCF Configurations:** [nncf_config/glue](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/glue)
20
-
21
- ### Adapter Configuration
22
-
23
- - **LoRA rank:** 8
24
- - **LoRA alpha:** 16
25
- - **LoRA target modules:** query, value
26
-
27
-
28
- ### Training and Evaluation
29
-
30
- [GLUE benchmark](https://gluebenchmark.com/)
31
-
32
- ### Training Hyperparameters
33
-
34
- | Task | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI |
35
- |------------|------|------|-------|------|-------|------|------|------|
36
- | Epoch | 80 | 35 | 60 | 80 | 60 | 80 | 60 | 40 |
37
- | Batch size | 32 | 32 | 64 | 64 | 64 | 64 | 64 | 64 |
38
- | Learning rate | 3e-4 | 5e-4 | 5e-4 | 3e-4 | 3e-4 | 4e-4 | 3e-4 | 4e-4 |
39
- | Max length | 128 | 128 | 128 | 128 | 128 | 256 | 128 | 128 |
40
-
41
- ## How to use
42
-
43
- Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands):
44
- ```bash
45
- CUDA_VISIBLE_DEVICES=${DEVICES} python run_glue.py \
46
- --task_name ${TASK} \
47
- --model_name_or_path bert-base-uncased \
48
- --do_eval \
49
- --do_search \
50
- --per_device_eval_batch_size 64 \
51
- --max_seq_length ${MAX_LENGTH} \
52
- --lora \
53
- --lora_weights lonas-bert-base-glue/lonas-bert-base-${TASK} \
54
- --nncf_config nncf_config/glue/nncf_lonas_bert_base_${TASK}.json \
55
- --output_dir lonas-bert-base-glue/lonas-bert-base-${TASK}/results
56
- ```
57
-
58
- ## Evaluation Results
59
-
60
- Results of the optimal sub-network discoverd from the super-network:
61
-
62
- | Method | Trainable Parameter Ratio | GFLOPs | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI | AVG |
63
- |-------------|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
64
- | LoRA | 0.27% | 11.2 | 65.85 | 84.46 | 88.73 | 57.58 | 92.06 | 90.62 | 89.41 | 83.00 | 81.46 |
65
- | **LoNAS** | 0.27% | **8.0** | 70.76 | 88.97 | 88.28 | 61.12 | 93.23 | 91.21 | 88.55 | 82.00 | **83.02** |
66
-
67
-
68
- ## Model Sources
69
-
70
- - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
71
- - **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
72
-
73
- ## Citation
74
-
75
- ```bibtex
76
- @article{munoz2024lonas,
77
- title = {LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
78
- author={J. Pablo Munoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
79
- journal={},
80
- year={2024}
81
- }
82
- ```
83
-
84
- ## License
85
-
86
- Apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ datasets:
5
+ - nyu-mll/glue
6
+ ---
7
+
8
+ # LoNAS Model Card: lonas-bert-base-glue
9
+
10
+ The super-networks fine-tuned on BERT-base with [GLUE benchmark](https://gluebenchmark.com/) using LoNAS.
11
+
12
+ ## Model Details
13
+
14
+ ### Information
15
+
16
+ - **Model name:** lonas-bert-base-glue
17
+ - **Base model:** [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
18
+ - **Subnetwork version:** Super-network
19
+ - **NNCF Configurations:** [nncf_config/glue](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/glue)
20
+
21
+ ### Adapter Configuration
22
+
23
+ - **LoRA rank:** 8
24
+ - **LoRA alpha:** 16
25
+ - **LoRA target modules:** query, value
26
+
27
+
28
+ ### Training and Evaluation
29
+
30
+ [GLUE benchmark](https://gluebenchmark.com/)
31
+
32
+ ### Training Hyperparameters
33
+
34
+ | Task | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI |
35
+ |------------|------|------|-------|------|-------|------|------|------|
36
+ | Epoch | 80 | 35 | 60 | 80 | 60 | 80 | 60 | 40 |
37
+ | Batch size | 32 | 32 | 64 | 64 | 64 | 64 | 64 | 64 |
38
+ | Learning rate | 3e-4 | 5e-4 | 5e-4 | 3e-4 | 3e-4 | 4e-4 | 3e-4 | 4e-4 |
39
+ | Max length | 128 | 128 | 128 | 128 | 128 | 256 | 128 | 128 |
40
+
41
+ ## How to use
42
+
43
+ Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/running_commands):
44
+ ```bash
45
+ CUDA_VISIBLE_DEVICES=${DEVICES} python run_glue.py \
46
+ --task_name ${TASK} \
47
+ --model_name_or_path bert-base-uncased \
48
+ --do_eval \
49
+ --do_search \
50
+ --per_device_eval_batch_size 64 \
51
+ --max_seq_length ${MAX_LENGTH} \
52
+ --lora \
53
+ --lora_weights lonas-bert-base-glue/lonas-bert-base-${TASK} \
54
+ --nncf_config nncf_config/glue/nncf_lonas_bert_base_${TASK}.json \
55
+ --output_dir lonas-bert-base-glue/lonas-bert-base-${TASK}/results
56
+ ```
57
+
58
+ ## Evaluation Results
59
+
60
+ Results of the optimal sub-network discoverd from the super-network:
61
+
62
+ | Method | Trainable Parameter Ratio | GFLOPs | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI | AVG |
63
+ |-------------|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
64
+ | LoRA | 0.27% | 11.2 | 65.85 | 84.46 | 88.73 | 57.58 | 92.06 | 90.62 | 89.41 | 83.00 | 81.46 |
65
+ | **LoNAS** | 0.27% | **8.0** | 70.76 | 88.97 | 88.28 | 61.12 | 93.23 | 91.21 | 88.55 | 82.00 | **83.02** |
66
+
67
+
68
+ ## Model Sources
69
+
70
+ **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
71
+
72
+ **Paper:**
73
+ - [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models](https://aclanthology.org/2024.lrec-main.940)
74
+ - [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)
75
+
76
+ ## Citation
77
+
78
+ ```bibtex
79
+ @inproceedings{munoz-etal-2024-lonas,
80
+ title = "{L}o{NAS}: Elastic Low-Rank Adapters for Efficient Large Language Models",
81
+ author = "Munoz, Juan Pablo and
82
+ Yuan, Jinjie and
83
+ Zheng, Yi and
84
+ Jain, Nilesh",
85
+ editor = "Calzolari, Nicoletta and
86
+ Kan, Min-Yen and
87
+ Hoste, Veronique and
88
+ Lenci, Alessandro and
89
+ Sakti, Sakriani and
90
+ Xue, Nianwen",
91
+ booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
92
+ month = may,
93
+ year = "2024",
94
+ address = "Torino, Italia",
95
+ publisher = "ELRA and ICCL",
96
+ url = "https://aclanthology.org/2024.lrec-main.940",
97
+ pages = "10760--10776",
98
+ }
99
+ ```
100
+
101
+ ## License
102
+
103
+ Apache-2.0