--- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - maywell/PiVoT-0.1-Evil-a - mlabonne/NeuralOmniBeagle-7B-v2 - roleplay - rp - not-for-all-audiences base_model: - maywell/PiVoT-0.1-Evil-a - mlabonne/NeuralOmniBeagle-7B-v2 model-index: - name: Konstanta-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.05 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.5 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.43 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.04 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B name: Open LLM Leaderboard --- # Konstanta-7B Konstanta-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [maywell/PiVoT-0.1-Evil-a](https://huggingface.co/maywell/PiVoT-0.1-Evil-a) * [mlabonne/NeuralOmniBeagle-7B-v2](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B-v2) This is a test merge that is supposed to improve Kunoichi by merging it with new Beagle model and PiVoT Evil, which both show good performance. Even though the model's name is in Russian, it is not really capable of properly using it, as it was not the main goal of the model. ## 🧩 Configuration ```yaml merge_method: dare_ties dtype: bfloat16 parameters: int8_mask: true base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B models: - model: SanjiWatsuki/Kunoichi-DPO-v2-7B - model: maywell/PiVoT-0.1-Evil-a parameters: density: 0.65 weight: 0.15 - model: mlabonne/NeuralOmniBeagle-7B-v2 parameters: density: 0.85 weight: 0.45 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Inv/Konstanta-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Inv__Konstanta-7B) | Metric |Value| |---------------------------------|----:| |Avg. |73.54| |AI2 Reasoning Challenge (25-Shot)|70.05| |HellaSwag (10-Shot) |87.50| |MMLU (5-Shot) |65.06| |TruthfulQA (0-shot) |65.43| |Winogrande (5-shot) |82.16| |GSM8k (5-shot) |71.04|