--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 base_model: bert-base-uncased model-index: - name: bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.941 name: Accuracy - type: f1 value: 0.9411169346964399 name: F1 --- # bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2591 - Accuracy: 0.941 - F1: 0.9411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0799 | 1.0 | 250 | 0.1898 | 0.9375 | 0.9377 | | 0.0516 | 2.0 | 500 | 0.2290 | 0.938 | 0.9383 | | 0.0386 | 3.0 | 750 | 0.2107 | 0.9415 | 0.9419 | | 0.0195 | 4.0 | 1000 | 0.2607 | 0.9435 | 0.9433 | | 0.0149 | 5.0 | 1250 | 0.2591 | 0.941 | 0.9411 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3