--- base_model: - google/gemma-1.1-7b-it tags: - merge - mergekit - lazymergekit - google/gemma-1.1-7b-it --- # gemma-1.1-7b-it-x2 gemma-1.1-7b-it-x2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [google/gemma-1.1-7b-it](https://huggingface.co/google/gemma-1.1-7b-it) ## 🧩 Configuration ```yaml models: - model: google/gemma-1.1-7b-it # No parameters necessary for base model - model: google/gemma-1.1-7b-it parameters: density: 0.53 weight: 0.6 merge_method: dare_ties base_model: google/gemma-1.1-7b-it parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "IsakNordgren/gemma-1.1-7b-it-x2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```