--- license: mit datasets: - vibhorag101/phr-mental-therapy-dataset-conversational-format language: - en base_model: - unsloth/Llama-3.2-3B-Instruct tags: - text-generation-inference - unsloth --- ## Overview The chatbot has been fine-tuned on the **PHR Therapy Dataset** using **LLaMA 3.2 3B Instruct**, enhancing its ability to engage in meaningful and supportive conversations. ## Features - **Empathetic Responses**: Trained to understand and respond with emotional intelligence. - **Context Awareness**: Retains context over multiple interactions. - **Mental Health Focus**: Provides supportive and non-judgmental responses based on therapy-related dialogues. - **Efficient Inference**: Optimized for deployment with reduced latency. ## Model Fine-Tuning Details - **Base Model**: LLaMA 3.2 3B Instruct - **Dataset**: PHR Therapy Dataset (contains therapist-patient conversations for empathetic response generation) - **Fine-Tuning Framework**: Unsloth (optimized training for efficiency) - **Training Environment**: Local GPU / Cloud Instance (depending on available resources) - **Optimization Techniques**: - LoRA (Low-Rank Adaptation) for parameter-efficient tuning - Mixed Precision Training for speed and memory efficiency - Supervised Fine-Tuning (SFT) on therapist-patient interactions ## Installation Using ollama ```bash ollama run hf.co/Ishan93/Fine_tuned_ver2 ``` ## Usage Using Google Colab or other notebooks ```python from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="Ishan93/Fine_tuned_ver2", filename="Fine_tuned_ver2.gguf", ) ```