cleanup
Browse files
README.md
CHANGED
@@ -1,11 +1,24 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
base_model: microsoft/mdeberta-v3-base
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
model-index:
|
7 |
- name: mdeberta-v3-base_finetuned_ai4privacy_v2
|
8 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -13,69 +26,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# mdeberta-v3-base_finetuned_ai4privacy_v2
|
15 |
|
16 |
-
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the
|
17 |
It achieves the following results on the evaluation set:
|
|
|
18 |
- Loss: 0.0323
|
19 |
- Overall Precision: 0.9636
|
20 |
- Overall Recall: 0.9731
|
21 |
- Overall F1: 0.9683
|
22 |
- Overall Accuracy: 0.9896
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
- Amount F1: 0.9495
|
27 |
-
- Bic F1: 0.9932
|
28 |
-
- Bitcoinaddress F1: 0.9704
|
29 |
-
- Buildingnumber F1: 0.9648
|
30 |
-
- City F1: 0.9887
|
31 |
-
- Companyname F1: 0.9942
|
32 |
-
- County F1: 0.9940
|
33 |
-
- Creditcardcvv F1: 0.9820
|
34 |
-
- Creditcardissuer F1: 0.9985
|
35 |
-
- Creditcardnumber F1: 0.9570
|
36 |
-
- Currency F1: 0.8750
|
37 |
-
- Currencycode F1: 0.9888
|
38 |
-
- Currencyname F1: 0.7416
|
39 |
-
- Currencysymbol F1: 0.9819
|
40 |
-
- Date F1: 0.9295
|
41 |
-
- Dob F1: 0.8946
|
42 |
-
- Email F1: 0.9998
|
43 |
-
- Ethereumaddress F1: 0.9965
|
44 |
-
- Eyecolor F1: 0.9984
|
45 |
-
- Firstname F1: 0.9886
|
46 |
-
- Gender F1: 0.9962
|
47 |
-
- Height F1: 1.0
|
48 |
-
- Iban F1: 0.9966
|
49 |
-
- Ip F1: 0.6284
|
50 |
-
- Ipv4 F1: 0.8884
|
51 |
-
- Ipv6 F1: 0.8015
|
52 |
-
- Jobarea F1: 0.9940
|
53 |
-
- Jobtitle F1: 0.9973
|
54 |
-
- Jobtype F1: 0.9970
|
55 |
-
- Lastname F1: 0.9653
|
56 |
-
- Litecoinaddress F1: 0.9109
|
57 |
-
- Mac F1: 0.9992
|
58 |
-
- Maskednumber F1: 0.9524
|
59 |
-
- Middlename F1: 0.9347
|
60 |
-
- Nearbygpscoordinate F1: 1.0
|
61 |
-
- Ordinaldirection F1: 0.9984
|
62 |
-
- Password F1: 0.9936
|
63 |
-
- Phoneimei F1: 0.9998
|
64 |
-
- Phonenumber F1: 0.9992
|
65 |
-
- Pin F1: 0.9857
|
66 |
-
- Prefix F1: 0.9801
|
67 |
-
- Secondaryaddress F1: 0.9988
|
68 |
-
- Sex F1: 0.9979
|
69 |
-
- Ssn F1: 0.9983
|
70 |
-
- State F1: 0.9944
|
71 |
-
- Street F1: 0.9953
|
72 |
-
- Time F1: 0.9974
|
73 |
-
- Url F1: 1.0
|
74 |
-
- Useragent F1: 1.0
|
75 |
-
- Username F1: 0.9966
|
76 |
-
- Vehiclevin F1: 0.9936
|
77 |
-
- Vehiclevrm F1: 0.9917
|
78 |
-
- Zipcode F1: 0.9727
|
79 |
|
80 |
## Model description
|
81 |
|
@@ -95,11 +56,11 @@ More information needed
|
|
95 |
|
96 |
The following hyperparameters were used during training:
|
97 |
- learning_rate: 5e-05
|
98 |
-
- train_batch_size:
|
99 |
-
- eval_batch_size:
|
100 |
- seed: 42
|
101 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-
|
102 |
-
- lr_scheduler_type:
|
103 |
- lr_scheduler_warmup_ratio: 0.2
|
104 |
- num_epochs: 5
|
105 |
|
@@ -119,4 +80,4 @@ The following hyperparameters were used during training:
|
|
119 |
- Transformers 4.35.2
|
120 |
- Pytorch 2.1.0+cu121
|
121 |
- Datasets 2.16.1
|
122 |
-
- Tokenizers 0.15.0
|
|
|
1 |
---
|
|
|
2 |
base_model: microsoft/mdeberta-v3-base
|
|
|
|
|
3 |
model-index:
|
4 |
- name: mdeberta-v3-base_finetuned_ai4privacy_v2
|
5 |
results: []
|
6 |
+
datasets:
|
7 |
+
- ai4privacy/pii-masking-200k
|
8 |
+
- Isotonic/pii-masking-200k
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
- de
|
12 |
+
- fr
|
13 |
+
- it
|
14 |
+
metrics:
|
15 |
+
- accuracy
|
16 |
+
- f1
|
17 |
+
- precision
|
18 |
+
- recall
|
19 |
+
library_name: transformers
|
20 |
+
pipeline_tag: token-classification
|
21 |
+
license: cc-by-nc-4.0
|
22 |
---
|
23 |
|
24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
26 |
|
27 |
# mdeberta-v3-base_finetuned_ai4privacy_v2
|
28 |
|
29 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the [ai4privacy/pii-masking-200k](https://huggingface.co/datasets/ai4privacy/pii-masking-200k) dataset.
|
30 |
It achieves the following results on the evaluation set:
|
31 |
+
|
32 |
- Loss: 0.0323
|
33 |
- Overall Precision: 0.9636
|
34 |
- Overall Recall: 0.9731
|
35 |
- Overall F1: 0.9683
|
36 |
- Overall Accuracy: 0.9896
|
37 |
+
|
38 |
+
## Useage
|
39 |
+
GitHub Implementation: [Ai4Privacy](https://github.com/Sripaad/ai4privacy)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Model description
|
42 |
|
|
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 32
|
60 |
+
- eval_batch_size: 32
|
61 |
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
63 |
+
- lr_scheduler_type: cosine_with_restarts
|
64 |
- lr_scheduler_warmup_ratio: 0.2
|
65 |
- num_epochs: 5
|
66 |
|
|
|
80 |
- Transformers 4.35.2
|
81 |
- Pytorch 2.1.0+cu121
|
82 |
- Datasets 2.16.1
|
83 |
+
- Tokenizers 0.15.0
|