PEFT
Safetensors
Isotr0py commited on
Commit
16ae91b
1 Parent(s): b86fd17

Upload 5 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: microsoft/phi-2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "dense",
25
+ "q_proj",
26
+ "k_proj",
27
+ "fc1",
28
+ "fc2"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6210a483394f694ab6595bcf4ba75b8d62eb474781e02c56a23a17642382d26e
3
+ size 47235968
trainer_state.json ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.1,
5
+ "eval_steps": 50,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.002,
13
+ "grad_norm": 0.2585286796092987,
14
+ "learning_rate": 0.0001,
15
+ "loss": 0.9729,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.004,
20
+ "grad_norm": 0.3368561565876007,
21
+ "learning_rate": 0.0002,
22
+ "loss": 0.9899,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.006,
27
+ "grad_norm": 0.499980092048645,
28
+ "learning_rate": 0.00019583333333333334,
29
+ "loss": 0.7853,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.008,
34
+ "grad_norm": 0.3696683347225189,
35
+ "learning_rate": 0.00019166666666666667,
36
+ "loss": 0.6654,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.01,
41
+ "grad_norm": 0.40797653794288635,
42
+ "learning_rate": 0.0001875,
43
+ "loss": 0.6311,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.012,
48
+ "grad_norm": 0.33503052592277527,
49
+ "learning_rate": 0.00018333333333333334,
50
+ "loss": 0.6248,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.014,
55
+ "grad_norm": 0.3338172733783722,
56
+ "learning_rate": 0.0001791666666666667,
57
+ "loss": 0.6046,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.016,
62
+ "grad_norm": 0.3330083191394806,
63
+ "learning_rate": 0.000175,
64
+ "loss": 0.6173,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.018,
69
+ "grad_norm": 0.3610495328903198,
70
+ "learning_rate": 0.00017083333333333333,
71
+ "loss": 0.6598,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.02,
76
+ "grad_norm": 0.5117771625518799,
77
+ "learning_rate": 0.0001666666666666667,
78
+ "loss": 0.701,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.02,
83
+ "eval_loss": 0.5943231582641602,
84
+ "eval_runtime": 1078.9543,
85
+ "eval_samples_per_second": 5.423,
86
+ "eval_steps_per_second": 0.678,
87
+ "step": 50
88
+ },
89
+ {
90
+ "epoch": 0.022,
91
+ "grad_norm": 0.24727080762386322,
92
+ "learning_rate": 0.00016250000000000002,
93
+ "loss": 0.5523,
94
+ "step": 55
95
+ },
96
+ {
97
+ "epoch": 0.024,
98
+ "grad_norm": 0.32829391956329346,
99
+ "learning_rate": 0.00015833333333333332,
100
+ "loss": 0.5601,
101
+ "step": 60
102
+ },
103
+ {
104
+ "epoch": 0.026,
105
+ "grad_norm": 0.2365810126066208,
106
+ "learning_rate": 0.00015416666666666668,
107
+ "loss": 0.5529,
108
+ "step": 65
109
+ },
110
+ {
111
+ "epoch": 0.028,
112
+ "grad_norm": 0.23763389885425568,
113
+ "learning_rate": 0.00015000000000000001,
114
+ "loss": 0.5683,
115
+ "step": 70
116
+ },
117
+ {
118
+ "epoch": 0.03,
119
+ "grad_norm": 0.2370971143245697,
120
+ "learning_rate": 0.00014583333333333335,
121
+ "loss": 0.5734,
122
+ "step": 75
123
+ },
124
+ {
125
+ "epoch": 0.032,
126
+ "grad_norm": 0.23187637329101562,
127
+ "learning_rate": 0.00014166666666666668,
128
+ "loss": 0.5589,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.034,
133
+ "grad_norm": 0.2783190906047821,
134
+ "learning_rate": 0.0001375,
135
+ "loss": 0.5833,
136
+ "step": 85
137
+ },
138
+ {
139
+ "epoch": 0.036,
140
+ "grad_norm": 0.2846642732620239,
141
+ "learning_rate": 0.00013333333333333334,
142
+ "loss": 0.5855,
143
+ "step": 90
144
+ },
145
+ {
146
+ "epoch": 0.038,
147
+ "grad_norm": 0.30239176750183105,
148
+ "learning_rate": 0.00012916666666666667,
149
+ "loss": 0.6083,
150
+ "step": 95
151
+ },
152
+ {
153
+ "epoch": 0.04,
154
+ "grad_norm": 0.4522075057029724,
155
+ "learning_rate": 0.000125,
156
+ "loss": 0.6666,
157
+ "step": 100
158
+ },
159
+ {
160
+ "epoch": 0.04,
161
+ "eval_loss": 0.5652860403060913,
162
+ "eval_runtime": 1078.4557,
163
+ "eval_samples_per_second": 5.425,
164
+ "eval_steps_per_second": 0.679,
165
+ "step": 100
166
+ },
167
+ {
168
+ "epoch": 0.042,
169
+ "grad_norm": 0.34593072533607483,
170
+ "learning_rate": 0.00012083333333333333,
171
+ "loss": 0.5283,
172
+ "step": 105
173
+ },
174
+ {
175
+ "epoch": 0.044,
176
+ "grad_norm": 0.24053940176963806,
177
+ "learning_rate": 0.00011666666666666668,
178
+ "loss": 0.5376,
179
+ "step": 110
180
+ },
181
+ {
182
+ "epoch": 0.046,
183
+ "grad_norm": 0.25374647974967957,
184
+ "learning_rate": 0.00011250000000000001,
185
+ "loss": 0.5268,
186
+ "step": 115
187
+ },
188
+ {
189
+ "epoch": 0.048,
190
+ "grad_norm": 0.2413879930973053,
191
+ "learning_rate": 0.00010833333333333333,
192
+ "loss": 0.5466,
193
+ "step": 120
194
+ },
195
+ {
196
+ "epoch": 0.05,
197
+ "grad_norm": 0.22842754423618317,
198
+ "learning_rate": 0.00010416666666666667,
199
+ "loss": 0.558,
200
+ "step": 125
201
+ },
202
+ {
203
+ "epoch": 0.052,
204
+ "grad_norm": 0.23777280747890472,
205
+ "learning_rate": 0.0001,
206
+ "loss": 0.5304,
207
+ "step": 130
208
+ },
209
+ {
210
+ "epoch": 0.054,
211
+ "grad_norm": 0.2853969633579254,
212
+ "learning_rate": 9.583333333333334e-05,
213
+ "loss": 0.5773,
214
+ "step": 135
215
+ },
216
+ {
217
+ "epoch": 0.056,
218
+ "grad_norm": 0.28491005301475525,
219
+ "learning_rate": 9.166666666666667e-05,
220
+ "loss": 0.5898,
221
+ "step": 140
222
+ },
223
+ {
224
+ "epoch": 0.058,
225
+ "grad_norm": 0.3216317892074585,
226
+ "learning_rate": 8.75e-05,
227
+ "loss": 0.6376,
228
+ "step": 145
229
+ },
230
+ {
231
+ "epoch": 0.06,
232
+ "grad_norm": 0.47678303718566895,
233
+ "learning_rate": 8.333333333333334e-05,
234
+ "loss": 0.6448,
235
+ "step": 150
236
+ },
237
+ {
238
+ "epoch": 0.06,
239
+ "eval_loss": 0.5443492531776428,
240
+ "eval_runtime": 1078.9513,
241
+ "eval_samples_per_second": 5.423,
242
+ "eval_steps_per_second": 0.678,
243
+ "step": 150
244
+ },
245
+ {
246
+ "epoch": 0.062,
247
+ "grad_norm": 0.3121783435344696,
248
+ "learning_rate": 7.916666666666666e-05,
249
+ "loss": 0.5081,
250
+ "step": 155
251
+ },
252
+ {
253
+ "epoch": 0.064,
254
+ "grad_norm": 0.2449740618467331,
255
+ "learning_rate": 7.500000000000001e-05,
256
+ "loss": 0.511,
257
+ "step": 160
258
+ },
259
+ {
260
+ "epoch": 0.066,
261
+ "grad_norm": 0.2097545564174652,
262
+ "learning_rate": 7.083333333333334e-05,
263
+ "loss": 0.509,
264
+ "step": 165
265
+ },
266
+ {
267
+ "epoch": 0.068,
268
+ "grad_norm": 0.23882268369197845,
269
+ "learning_rate": 6.666666666666667e-05,
270
+ "loss": 0.5411,
271
+ "step": 170
272
+ },
273
+ {
274
+ "epoch": 0.07,
275
+ "grad_norm": 0.26276838779449463,
276
+ "learning_rate": 6.25e-05,
277
+ "loss": 0.5539,
278
+ "step": 175
279
+ },
280
+ {
281
+ "epoch": 0.072,
282
+ "grad_norm": 0.26204946637153625,
283
+ "learning_rate": 5.833333333333334e-05,
284
+ "loss": 0.5692,
285
+ "step": 180
286
+ },
287
+ {
288
+ "epoch": 0.074,
289
+ "grad_norm": 0.27385151386260986,
290
+ "learning_rate": 5.4166666666666664e-05,
291
+ "loss": 0.5599,
292
+ "step": 185
293
+ },
294
+ {
295
+ "epoch": 0.076,
296
+ "grad_norm": 0.3151029646396637,
297
+ "learning_rate": 5e-05,
298
+ "loss": 0.5622,
299
+ "step": 190
300
+ },
301
+ {
302
+ "epoch": 0.078,
303
+ "grad_norm": 0.372055321931839,
304
+ "learning_rate": 4.5833333333333334e-05,
305
+ "loss": 0.6128,
306
+ "step": 195
307
+ },
308
+ {
309
+ "epoch": 0.08,
310
+ "grad_norm": 0.4943559765815735,
311
+ "learning_rate": 4.166666666666667e-05,
312
+ "loss": 0.6352,
313
+ "step": 200
314
+ },
315
+ {
316
+ "epoch": 0.08,
317
+ "eval_loss": 0.5273013114929199,
318
+ "eval_runtime": 1079.0525,
319
+ "eval_samples_per_second": 5.422,
320
+ "eval_steps_per_second": 0.678,
321
+ "step": 200
322
+ },
323
+ {
324
+ "epoch": 0.082,
325
+ "grad_norm": 0.28252649307250977,
326
+ "learning_rate": 3.7500000000000003e-05,
327
+ "loss": 0.4963,
328
+ "step": 205
329
+ },
330
+ {
331
+ "epoch": 0.084,
332
+ "grad_norm": 0.2909074127674103,
333
+ "learning_rate": 3.3333333333333335e-05,
334
+ "loss": 0.5165,
335
+ "step": 210
336
+ },
337
+ {
338
+ "epoch": 0.086,
339
+ "grad_norm": 0.2641913890838623,
340
+ "learning_rate": 2.916666666666667e-05,
341
+ "loss": 0.5264,
342
+ "step": 215
343
+ },
344
+ {
345
+ "epoch": 0.088,
346
+ "grad_norm": 0.2438758909702301,
347
+ "learning_rate": 2.5e-05,
348
+ "loss": 0.525,
349
+ "step": 220
350
+ },
351
+ {
352
+ "epoch": 0.09,
353
+ "grad_norm": 0.2509464621543884,
354
+ "learning_rate": 2.0833333333333336e-05,
355
+ "loss": 0.5451,
356
+ "step": 225
357
+ },
358
+ {
359
+ "epoch": 0.092,
360
+ "grad_norm": 0.26488572359085083,
361
+ "learning_rate": 1.6666666666666667e-05,
362
+ "loss": 0.5512,
363
+ "step": 230
364
+ },
365
+ {
366
+ "epoch": 0.094,
367
+ "grad_norm": 0.2820191979408264,
368
+ "learning_rate": 1.25e-05,
369
+ "loss": 0.548,
370
+ "step": 235
371
+ },
372
+ {
373
+ "epoch": 0.096,
374
+ "grad_norm": 0.3010896146297455,
375
+ "learning_rate": 8.333333333333334e-06,
376
+ "loss": 0.578,
377
+ "step": 240
378
+ },
379
+ {
380
+ "epoch": 0.098,
381
+ "grad_norm": 0.38558459281921387,
382
+ "learning_rate": 4.166666666666667e-06,
383
+ "loss": 0.5913,
384
+ "step": 245
385
+ },
386
+ {
387
+ "epoch": 0.1,
388
+ "grad_norm": 0.6697375178337097,
389
+ "learning_rate": 0.0,
390
+ "loss": 0.6351,
391
+ "step": 250
392
+ },
393
+ {
394
+ "epoch": 0.1,
395
+ "eval_loss": 0.5142252445220947,
396
+ "eval_runtime": 1078.9757,
397
+ "eval_samples_per_second": 5.423,
398
+ "eval_steps_per_second": 0.678,
399
+ "step": 250
400
+ }
401
+ ],
402
+ "logging_steps": 5,
403
+ "max_steps": 250,
404
+ "num_input_tokens_seen": 0,
405
+ "num_train_epochs": 1,
406
+ "save_steps": 50,
407
+ "stateful_callbacks": {
408
+ "TrainerControl": {
409
+ "args": {
410
+ "should_epoch_stop": false,
411
+ "should_evaluate": false,
412
+ "should_log": false,
413
+ "should_save": true,
414
+ "should_training_stop": true
415
+ },
416
+ "attributes": {}
417
+ }
418
+ },
419
+ "total_flos": 2.64628687263744e+16,
420
+ "train_batch_size": 20,
421
+ "trial_name": null,
422
+ "trial_params": null
423
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afdbb904a0de0d0bedb04b1076d8999b0f53936b7c462eda048ac804b925cd33
3
+ size 5048