JFernandoGRE commited on
Commit
0974e5c
·
verified ·
1 Parent(s): 0152a03

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:5538
11
+ - loss:OnlineContrastiveLoss
12
+ base_model: thenlper/gte-large
13
+ widget:
14
+ - source_sentence: '>Kenneth J. Gonzales'
15
+ sentences:
16
+ - AMY J. St.EVE
17
+ - BRUCE J.MCGIVERIN
18
+ - CHARLES P. KOCORAS, District Judge
19
+ - source_sentence: CHARLES EVERINGHAM IV
20
+ sentences:
21
+ - CHARLES W. PICKERING, SR.
22
+ - Albert V. Bryan Jr.
23
+ - CHARLES EVERINGHAME VI
24
+ - source_sentence: Alexander Harvey, II
25
+ sentences:
26
+ - BRUCE S. JENKINS
27
+ - BENSON E. LEGG
28
+ - Alexander Harvey II
29
+ - source_sentence: BRETT M. KAVANAUGH; ELLEN SEGAL HUVELLE; RUDOLPH CONTRERAS
30
+ sentences:
31
+ - ALEXANDER WILLIAMS, JR.
32
+ - CHARLES RONALD
33
+ - Caroline M. Craven
34
+ - source_sentence: AmySt. Eve J.
35
+ sentences:
36
+ - BENJAMIN B. GIBSON
37
+ - ALGENON I. MARBLEY
38
+ - BARBARA J. ROTHSTEIN
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ ---
42
+
43
+ # MPNet base trained on AllNLI triplets
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-large](https://huggingface.co/thenlper/gte-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) <!-- at revision 4bef63f39fcc5e2d6b0aae83089f307af4970164 -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 1024 dimensions
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ - **Language:** en
57
+ - **License:** apache-2.0
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ (2): Normalize()
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("JFernandoGRE/gtelarge-duplicates-judgenames")
91
+ # Run inference
92
+ sentences = [
93
+ 'AmySt. Eve J.',
94
+ 'BARBARA J. ROTHSTEIN',
95
+ 'ALGENON I. MARBLEY',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 1024]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Dataset
146
+
147
+ #### Unnamed Dataset
148
+
149
+
150
+ * Size: 5,538 training samples
151
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
152
+ * Approximate statistics based on the first 1000 samples:
153
+ | | sentence1 | sentence2 | label |
154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
155
+ | type | string | string | int |
156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 9.43 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.67 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~73.50%</li><li>1: ~26.50%</li></ul> |
157
+ * Samples:
158
+ | sentence1 | sentence2 | label |
159
+ |:-------------------------------|:---------------------------|:---------------|
160
+ | <code>REGGIE B. WALTON</code> | <code>REGGIEBWALTON</code> | <code>1</code> |
161
+ | <code>REGGIE WALTON</code> | <code>REGGIEBWALTON</code> | <code>1</code> |
162
+ | <code>TREGGIE B. WALTON</code> | <code>REGGIEBWALTON</code> | <code>0</code> |
163
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
164
+
165
+ ### Evaluation Dataset
166
+
167
+ #### Unnamed Dataset
168
+
169
+
170
+ * Size: 7,218 evaluation samples
171
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
172
+ * Approximate statistics based on the first 1000 samples:
173
+ | | sentence1 | sentence2 | label |
174
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
175
+ | type | string | string | int |
176
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.23 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.99 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~78.10%</li><li>1: ~21.90%</li></ul> |
177
+ * Samples:
178
+ | sentence1 | sentence2 | label |
179
+ |:---------------------------|:---------------------|:---------------|
180
+ | <code>St. Eve</code> | <code>*St Eve</code> | <code>1</code> |
181
+ | <code>Amy J St. Eve</code> | <code>*St Eve</code> | <code>1</code> |
182
+ | <code>Amy J. St Eve</code> | <code>*St Eve</code> | <code>1</code> |
183
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
184
+
185
+ ### Training Hyperparameters
186
+ #### Non-Default Hyperparameters
187
+
188
+ - `eval_strategy`: steps
189
+ - `per_device_train_batch_size`: 16
190
+ - `per_device_eval_batch_size`: 16
191
+ - `learning_rate`: 1e-05
192
+ - `warmup_ratio`: 0.182
193
+ - `fp16`: True
194
+
195
+ #### All Hyperparameters
196
+ <details><summary>Click to expand</summary>
197
+
198
+ - `overwrite_output_dir`: False
199
+ - `do_predict`: False
200
+ - `eval_strategy`: steps
201
+ - `prediction_loss_only`: True
202
+ - `per_device_train_batch_size`: 16
203
+ - `per_device_eval_batch_size`: 16
204
+ - `per_gpu_train_batch_size`: None
205
+ - `per_gpu_eval_batch_size`: None
206
+ - `gradient_accumulation_steps`: 1
207
+ - `eval_accumulation_steps`: None
208
+ - `torch_empty_cache_steps`: None
209
+ - `learning_rate`: 1e-05
210
+ - `weight_decay`: 0.0
211
+ - `adam_beta1`: 0.9
212
+ - `adam_beta2`: 0.999
213
+ - `adam_epsilon`: 1e-08
214
+ - `max_grad_norm`: 1.0
215
+ - `num_train_epochs`: 3
216
+ - `max_steps`: -1
217
+ - `lr_scheduler_type`: linear
218
+ - `lr_scheduler_kwargs`: {}
219
+ - `warmup_ratio`: 0.182
220
+ - `warmup_steps`: 0
221
+ - `log_level`: passive
222
+ - `log_level_replica`: warning
223
+ - `log_on_each_node`: True
224
+ - `logging_nan_inf_filter`: True
225
+ - `save_safetensors`: True
226
+ - `save_on_each_node`: False
227
+ - `save_only_model`: False
228
+ - `restore_callback_states_from_checkpoint`: False
229
+ - `no_cuda`: False
230
+ - `use_cpu`: False
231
+ - `use_mps_device`: False
232
+ - `seed`: 42
233
+ - `data_seed`: None
234
+ - `jit_mode_eval`: False
235
+ - `use_ipex`: False
236
+ - `bf16`: False
237
+ - `fp16`: True
238
+ - `fp16_opt_level`: O1
239
+ - `half_precision_backend`: auto
240
+ - `bf16_full_eval`: False
241
+ - `fp16_full_eval`: False
242
+ - `tf32`: None
243
+ - `local_rank`: 0
244
+ - `ddp_backend`: None
245
+ - `tpu_num_cores`: None
246
+ - `tpu_metrics_debug`: False
247
+ - `debug`: []
248
+ - `dataloader_drop_last`: False
249
+ - `dataloader_num_workers`: 0
250
+ - `dataloader_prefetch_factor`: None
251
+ - `past_index`: -1
252
+ - `disable_tqdm`: False
253
+ - `remove_unused_columns`: True
254
+ - `label_names`: None
255
+ - `load_best_model_at_end`: False
256
+ - `ignore_data_skip`: False
257
+ - `fsdp`: []
258
+ - `fsdp_min_num_params`: 0
259
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
260
+ - `fsdp_transformer_layer_cls_to_wrap`: None
261
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
262
+ - `deepspeed`: None
263
+ - `label_smoothing_factor`: 0.0
264
+ - `optim`: adamw_torch
265
+ - `optim_args`: None
266
+ - `adafactor`: False
267
+ - `group_by_length`: False
268
+ - `length_column_name`: length
269
+ - `ddp_find_unused_parameters`: None
270
+ - `ddp_bucket_cap_mb`: None
271
+ - `ddp_broadcast_buffers`: False
272
+ - `dataloader_pin_memory`: True
273
+ - `dataloader_persistent_workers`: False
274
+ - `skip_memory_metrics`: True
275
+ - `use_legacy_prediction_loop`: False
276
+ - `push_to_hub`: False
277
+ - `resume_from_checkpoint`: None
278
+ - `hub_model_id`: None
279
+ - `hub_strategy`: every_save
280
+ - `hub_private_repo`: False
281
+ - `hub_always_push`: False
282
+ - `gradient_checkpointing`: False
283
+ - `gradient_checkpointing_kwargs`: None
284
+ - `include_inputs_for_metrics`: False
285
+ - `include_for_metrics`: []
286
+ - `eval_do_concat_batches`: True
287
+ - `fp16_backend`: auto
288
+ - `push_to_hub_model_id`: None
289
+ - `push_to_hub_organization`: None
290
+ - `mp_parameters`:
291
+ - `auto_find_batch_size`: False
292
+ - `full_determinism`: False
293
+ - `torchdynamo`: None
294
+ - `ray_scope`: last
295
+ - `ddp_timeout`: 1800
296
+ - `torch_compile`: False
297
+ - `torch_compile_backend`: None
298
+ - `torch_compile_mode`: None
299
+ - `dispatch_batches`: None
300
+ - `split_batches`: None
301
+ - `include_tokens_per_second`: False
302
+ - `include_num_input_tokens_seen`: False
303
+ - `neftune_noise_alpha`: None
304
+ - `optim_target_modules`: None
305
+ - `batch_eval_metrics`: False
306
+ - `eval_on_start`: False
307
+ - `use_liger_kernel`: False
308
+ - `eval_use_gather_object`: False
309
+ - `average_tokens_across_devices`: False
310
+ - `prompts`: None
311
+ - `batch_sampler`: batch_sampler
312
+ - `multi_dataset_batch_sampler`: proportional
313
+
314
+ </details>
315
+
316
+ ### Training Logs
317
+ | Epoch | Step | Training Loss | Validation Loss |
318
+ |:------:|:----:|:-------------:|:---------------:|
319
+ | 0.2882 | 100 | 0.1823 | 0.1130 |
320
+ | 0.5764 | 200 | 0.139 | 0.1055 |
321
+ | 0.8646 | 300 | 0.1187 | 0.0867 |
322
+ | 1.1527 | 400 | 0.0792 | 0.0885 |
323
+ | 1.4409 | 500 | 0.0531 | 0.0769 |
324
+ | 1.7291 | 600 | 0.0538 | 0.0794 |
325
+ | 2.0173 | 700 | 0.0686 | 0.0747 |
326
+ | 2.3055 | 800 | 0.0446 | 0.0729 |
327
+ | 2.5937 | 900 | 0.0413 | 0.0703 |
328
+ | 2.8818 | 1000 | 0.0396 | 0.0704 |
329
+
330
+
331
+ ### Framework Versions
332
+ - Python: 3.10.12
333
+ - Sentence Transformers: 3.3.1
334
+ - Transformers: 4.46.3
335
+ - PyTorch: 2.5.1+cu121
336
+ - Accelerate: 1.1.1
337
+ - Datasets: 3.1.0
338
+ - Tokenizers: 0.20.3
339
+
340
+ ## Citation
341
+
342
+ ### BibTeX
343
+
344
+ #### Sentence Transformers
345
+ ```bibtex
346
+ @inproceedings{reimers-2019-sentence-bert,
347
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
348
+ author = "Reimers, Nils and Gurevych, Iryna",
349
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
350
+ month = "11",
351
+ year = "2019",
352
+ publisher = "Association for Computational Linguistics",
353
+ url = "https://arxiv.org/abs/1908.10084",
354
+ }
355
+ ```
356
+
357
+ <!--
358
+ ## Glossary
359
+
360
+ *Clearly define terms in order to be accessible across audiences.*
361
+ -->
362
+
363
+ <!--
364
+ ## Model Card Authors
365
+
366
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
367
+ -->
368
+
369
+ <!--
370
+ ## Model Card Contact
371
+
372
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
373
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thenlper/gte-large",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3470d93f5806ccbe23faa234237f61786382e7d57a5f11f9ea9b66e5367f5490
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff