---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5538
- loss:OnlineContrastiveLoss
base_model: thenlper/gte-large
widget:
- source_sentence: '>Kenneth J. Gonzales'
sentences:
- AMY J. St.EVE
- BRUCE J.MCGIVERIN
- CHARLES P. KOCORAS, District Judge
- source_sentence: CHARLES EVERINGHAM IV
sentences:
- CHARLES W. PICKERING, SR.
- Albert V. Bryan Jr.
- CHARLES EVERINGHAME VI
- source_sentence: Alexander Harvey, II
sentences:
- BRUCE S. JENKINS
- BENSON E. LEGG
- Alexander Harvey II
- source_sentence: BRETT M. KAVANAUGH; ELLEN SEGAL HUVELLE; RUDOLPH CONTRERAS
sentences:
- ALEXANDER WILLIAMS, JR.
- CHARLES RONALD
- Caroline M. Craven
- source_sentence: AmySt. Eve J.
sentences:
- BENJAMIN B. GIBSON
- ALGENON I. MARBLEY
- BARBARA J. ROTHSTEIN
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# MPNet base trained on AllNLI triplets
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-large](https://huggingface.co/thenlper/gte-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JFernandoGRE/gtelarge-duplicates-judgenames")
# Run inference
sentences = [
'AmySt. Eve J.',
'BARBARA J. ROTHSTEIN',
'ALGENON I. MARBLEY',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 5,538 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
REGGIE B. WALTON
| REGGIEBWALTON
| 1
|
| REGGIE WALTON
| REGGIEBWALTON
| 1
|
| TREGGIE B. WALTON
| REGGIEBWALTON
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 7,218 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | St. Eve
| *St Eve
| 1
|
| Amy J St. Eve
| *St Eve
| 1
|
| Amy J. St Eve
| *St Eve
| 1
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 1e-05
- `warmup_ratio`: 0.182
- `fp16`: True
#### All Hyperparameters