Upload 1st version of PPO
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo-LunarLander-v2
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 292.97 +/- 12.89
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee88a5b8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee88a5b950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee88a5b9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee88a5ba70>", "_build": "<function ActorCriticPolicy._build at 0x7fee88a5bb00>", "forward": "<function ActorCriticPolicy.forward at 0x7fee88a5bb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee88a5bc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee88a5bcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee88a5bd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee88a5bdd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee88a5be60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee88a9ddb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651778324.6485589, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYa7Dtcm3a64AptuDuwmLOG8XI6eniJNwAAgD8AAIA/zRp1PMNpcbrrtLo80tAnOaxTgrY5bh04AAAAAAAAAADNRRs+myuAP3kMMj4dz0u/n8C8Plj3BDwAAAAAAAAAAACPVj3R+kc+CSsdviXECr86cag8RcwAvgAAAAAAAAAAM527vE/APryKIvU710x1PAEJsL1tok49AACAPwAAgD8NU5s9pJXfPcowyr0OuRG/WKD3PU5bxL0AAAAAAAAAAIBKXD3gkOs+8uw/vb0gOL9i9Q0+AjacvAAAAAAAAAAAGjdXvVwXHLpyzpy1yaaSr8t6Eruksq80AACAPwAAgD+G0T6+IqOJPg9rAT9cff++1ERvvUwBpj4AAAAAAAAAAJVUg75Jq4s/xjPMvqxVPb/l3w6/vS/PvQAAAAAAAAAAwO7FPYRtfj+KEbk+gvdfvwsiVj7PsI8+AAAAAAAAAACanJm8Bga3P7qZHr9WMoI+l2J7PANBbz0AAAAAAAAAADPHOz4MMIA/NNumPh5nHL9zOOE+4m8gPgAAAAAAAAAAbSQmvoyPFz5itfw+IxnevmVzILyDBp0+AAAAAAAAAAAN/bA9K6mTPcI27L5DC7y+W1gFvqKZr74AAAAAAAAAAO0hMj53LFE/btQkPmlrOb+8oeQ+HHaLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHjS77u15dECUhpRSlIwBbJRLs4wBdJRHQLtqQ41xbSt1fZQoaAZoCWgPQwhBDHTtiwhzQJSGlFKUaBVLwGgWR0C7ak/G2kSFdX2UKGgGaAloD0MIL6TDQ9iwc0CUhpRSlGgVS7BoFkdAu2pXokiUxHV9lChoBmgJaA9DCKxUUFE17HNAlIaUUpRoFUvKaBZHQLtqYd/8VHp1fZQoaAZoCWgPQwikNJvHYVR0QJSGlFKUaBVL0WgWR0C7aodShrWRdX2UKGgGaAloD0MIO420VJ6HcUCUhpRSlGgVS8doFkdAu2qn/82rGXV9lChoBmgJaA9DCHo57L5jlnNAlIaUUpRoFUufaBZHQLtqqZ+x4Y91fZQoaAZoCWgPQwgo8bkTrElyQJSGlFKUaBVLuGgWR0C7arAs9SuRdX2UKGgGaAloD0MIbcZpiOqqcUCUhpRSlGgVS6JoFkdAu2qz1h9b5nV9lChoBmgJaA9DCK64OCo3KHNAlIaUUpRoFUvVaBZHQLtqvgUDdQB1fZQoaAZoCWgPQwiCjla15BFyQJSGlFKUaBVLtWgWR0C7asr/bTMJdX2UKGgGaAloD0MIXD0nvS+wckCUhpRSlGgVS9BoFkdAu2rh+3H7xnV9lChoBmgJaA9DCBFwCFXqTHJAlIaUUpRoFUu3aBZHQLtvfG1x82J1fZQoaAZoCWgPQwjkMm5qIHJxQJSGlFKUaBVLt2gWR0C7b6LTDwYtdX2UKGgGaAloD0MIXHNH/wtXc0CUhpRSlGgVS7xoFkdAu2+mJFb3XnV9lChoBmgJaA9DCO0qpPykbnBAlIaUUpRoFUumaBZHQLtvuPJaJRB1fZQoaAZoCWgPQwiLbr2mB2pxQJSGlFKUaBVLtWgWR0C7b8BWtEG8dX2UKGgGaAloD0MIMiJRaFmic0CUhpRSlGgVS79oFkdAu2/D+1jRUnV9lChoBmgJaA9DCDSBIhbx83JAlIaUUpRoFUvOaBZHQLtvyQEpy6t1fZQoaAZoCWgPQwhcBMb6xhpzQJSGlFKUaBVLvmgWR0C7b/bqY7aJdX2UKGgGaAloD0MICYm0jX9bckCUhpRSlGgVS6hoFkdAu3AIMRYigXV9lChoBmgJaA9DCK0yU1o/0XJAlIaUUpRoFUu1aBZHQLtwDB/I8yN1fZQoaAZoCWgPQwjrH0QyJNtxQJSGlFKUaBVLt2gWR0C7cBA0TDfndX2UKGgGaAloD0MIqdkDrUDzckCUhpRSlGgVS51oFkdAu3AT1vl2eXV9lChoBmgJaA9DCGNCzCWV2HNAlIaUUpRoFUu8aBZHQLtwKvjfek51fZQoaAZoCWgPQwjpgCTsW+NzQJSGlFKUaBVLymgWR0C7cCz+aScLdX2UKGgGaAloD0MIfgIoRlb1cECUhpRSlGgVS79oFkdAu3BSp++dsnV9lChoBmgJaA9DCIjYYOFkZXNAlIaUUpRoFUvOaBZHQLtwbnxaxHJ1fZQoaAZoCWgPQwgUsB2MmIVyQJSGlFKUaBVLuGgWR0C7cHqVII4VdX2UKGgGaAloD0MIMnIW9vRpckCUhpRSlGgVS69oFkdAu3CGfK6nSHV9lChoBmgJaA9DCM7drpdmjnNAlIaUUpRoFUvGaBZHQLtwj1pj+aV1fZQoaAZoCWgPQwhRvqCFBGJvQJSGlFKUaBVLqWgWR0C7cJAVfu1GdX2UKGgGaAloD0MIb59VZsoSdECUhpRSlGgVS7RoFkdAu3CUGA08/3V9lChoBmgJaA9DCKpm1lIAL3FAlIaUUpRoFUu6aBZHQLtwoCEYfnx1fZQoaAZoCWgPQwgr2hzndspwQJSGlFKUaBVLoWgWR0C7cLiBwuM/dX2UKGgGaAloD0MIP6w3aoXlcECUhpRSlGgVS5loFkdAu3DA52hZhnV9lChoBmgJaA9DCEBpqFHIi3JAlIaUUpRoFUupaBZHQLtw3PWxyGV1fZQoaAZoCWgPQwj59NiWAUNyQJSGlFKUaBVLrWgWR0C7cN4h2W6cdX2UKGgGaAloD0MImgtcHutdcUCUhpRSlGgVS7hoFkdAu3DyqEOAiHV9lChoBmgJaA9DCKw3aoVpFXJAlIaUUpRoFUusaBZHQLtw/eEqUeN1fZQoaAZoCWgPQwimnC/23r9zQJSGlFKUaBVLu2gWR0C7cQ60hNdrdX2UKGgGaAloD0MIO/vKg3TZcUCUhpRSlGgVS7xoFkdAu3E3jS5RTHV9lChoBmgJaA9DCN8bQwDwGHJAlIaUUpRoFUuaaBZHQLtxUDLr5Zd1fZQoaAZoCWgPQwilhGBV/Qd0QJSGlFKUaBVLu2gWR0C7cVNlI3BIdX2UKGgGaAloD0MIJnFWRE2eckCUhpRSlGgVS6poFkdAu3FWgJ1JUnV9lChoBmgJaA9DCCyBlNj1nHFAlIaUUpRoFUu7aBZHQLtxXyWAwwl1fZQoaAZoCWgPQwjfT42XLp5zQJSGlFKUaBVLrWgWR0C7cWLulXRxdX2UKGgGaAloD0MIuI/cmrQZckCUhpRSlGgVS75oFkdAu3F1pDeCTXV9lChoBmgJaA9DCN481SF39XNAlIaUUpRoFUuwaBZHQLtxdLi++M91fZQoaAZoCWgPQwgxtDo5A5xxQJSGlFKUaBVLp2gWR0C7cYiGetjkdX2UKGgGaAloD0MIaLJ/ngafcECUhpRSlGgVS7FoFkdAu3GMdvKlpHV9lChoBmgJaA9DCL+er1lu33FAlIaUUpRoFUuraBZHQLtxp9pRGc51fZQoaAZoCWgPQwgiwr8ImsVxQJSGlFKUaBVLs2gWR0C7cbICMglodX2UKGgGaAloD0MIFhbcD3idcUCUhpRSlGgVS6hoFkdAu3HDlhgE2nV9lChoBmgJaA9DCG9IowKnQ3RAlIaUUpRoFUvNaBZHQLtx49V3ljp1fZQoaAZoCWgPQwh4DmWoCnNyQJSGlFKUaBVLumgWR0C7cejrE9+xdX2UKGgGaAloD0MISfJc30d8cUCUhpRSlGgVS6ZoFkdAu3H6Mju8b3V9lChoBmgJaA9DCFbXoZqSV3FAlIaUUpRoFUuWaBZHQLtx/xO+IuZ1fZQoaAZoCWgPQwgEVDiCVGxxQJSGlFKUaBVLr2gWR0C7cixrBTGYdX2UKGgGaAloD0MIowOSsK91c0CUhpRSlGgVS7hoFkdAu3I7v3JxN3V9lChoBmgJaA9DCMrgKHl1d3NAlIaUUpRoFUvHaBZHQLtyQSVnmJZ1fZQoaAZoCWgPQwi2oWKcf2RwQJSGlFKUaBVLrGgWR0C7ckB8c+7ldX2UKGgGaAloD0MIh07Pu/EickCUhpRSlGgVS8RoFkdAu3Jdr433pXV9lChoBmgJaA9DCJvj3CYcn3JAlIaUUpRoFUuzaBZHQLtyXsS00Fd1fZQoaAZoCWgPQwg7cqQzsIxxQJSGlFKUaBVLsmgWR0C7cmGlQ/HHdX2UKGgGaAloD0MI4j0HluPrcECUhpRSlGgVS6ZoFkdAu3JuFSKm9HV9lChoBmgJaA9DCEi/fR04KXRAlIaUUpRoFUv1aBZHQLtydBHCoCN1fZQoaAZoCWgPQwiv0AfL2NRxQJSGlFKUaBVLpGgWR0C7cnXe7+UAdX2UKGgGaAloD0MIglZgyCqdcUCUhpRSlGgVS6JoFkdAu3KFBHCoCXV9lChoBmgJaA9DCH089N0tgGhAlIaUUpRoFU3oA2gWR0C7cpvQnhKldX2UKGgGaAloD0MIfEPhs3ULdECUhpRSlGgVS75oFkdAu3LFZJTVD3V9lChoBmgJaA9DCFCr6A/NkHFAlIaUUpRoFUuwaBZHQLtyzwlByCF1fZQoaAZoCWgPQwi0Vx8P/VdxQJSGlFKUaBVLxGgWR0C7cuGFzuF6dX2UKGgGaAloD0MItRg8TPvAckCUhpRSlGgVS9hoFkdAu3Loe6qbSnV9lChoBmgJaA9DCF6+9WH9v3BAlIaUUpRoFUuvaBZHQLtzBRZU1ht1fZQoaAZoCWgPQwhWSs/0Et9uQJSGlFKUaBVLmmgWR0C7cxDZDiOvdX2UKGgGaAloD0MIycnErQIYckCUhpRSlGgVS6BoFkdAu3MUIY3vQXV9lChoBmgJaA9DCJC7CFPUvnNAlIaUUpRoFUvJaBZHQLtzFKIi1Rd1fZQoaAZoCWgPQwhtNlZiXs5xQJSGlFKUaBVLumgWR0C7cxZHy3CsdX2UKGgGaAloD0MIhlW8kTlnckCUhpRSlGgVS8ZoFkdAu3MhXo1UEXV9lChoBmgJaA9DCA1xrItbH3JAlIaUUpRoFUuuaBZHQLtzI0Zm7J51fZQoaAZoCWgPQwj+8smKIV1xQJSGlFKUaBVLm2gWR0C7cyQj2SMcdX2UKGgGaAloD0MIpztPPGdUcUCUhpRSlGgVS6xoFkdAu3MzFm4Aj3V9lChoBmgJaA9DCAVtcvhkbHNAlIaUUpRoFUvLaBZHQLtzTM85jpd1fZQoaAZoCWgPQwhq+1dWmg9yQJSGlFKUaBVLpGgWR0C7c09PP9k0dX2UKGgGaAloD0MIfZV87O79cUCUhpRSlGgVS75oFkdAu3NUyrPt2XV9lChoBmgJaA9DCGX+0TdpXnFAlIaUUpRoFUugaBZHQLtzb9AX2uh1fZQoaAZoCWgPQwgqApzeRSpwQJSGlFKUaBVLn2gWR0C7c3cVclgMdX2UKGgGaAloD0MIuaerO1bVcUCUhpRSlGgVS7RoFkdAu3OrKDCgsnV9lChoBmgJaA9DCPHZOjiY73FAlIaUUpRoFUu8aBZHQLtzrb8WKuV1fZQoaAZoCWgPQwjhm6bPTgZwQJSGlFKUaBVLnWgWR0C7c6+xwAEMdX2UKGgGaAloD0MIZRpNLsa5b0CUhpRSlGgVS6NoFkdAu3PIP6KtP3V9lChoBmgJaA9DCHf4a7KGEHNAlIaUUpRoFUunaBZHQLtzz8HObAl1fZQoaAZoCWgPQwiWCiqq/vhzQJSGlFKUaBVLv2gWR0C7c+ewosqbdX2UKGgGaAloD0MIlba4xicpdECUhpRSlGgVS69oFkdAu3Pp7D2rXHV9lChoBmgJaA9DCGjKTj9o2XJAlIaUUpRoFUvAaBZHQLtz7SIgvDh1fZQoaAZoCWgPQwjOUUfHVSJxQJSGlFKUaBVLtWgWR0C7c/JRwZO0dX2UKGgGaAloD0MIOQ68Wm6jc0CUhpRSlGgVS8BoFkdAu3P7OGCZnnV9lChoBmgJaA9DCFVntcAeC3JAlIaUUpRoFUu6aBZHQLt0CCAc1fp1fZQoaAZoCWgPQwizCTAsf29zQJSGlFKUaBVLtWgWR0C7dB8lLOAzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5ffde8a414641993177871459e954d57492badec672f03ac9434c6e41e4df30
|
3 |
+
size 143986
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fee88a5b8c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee88a5b950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee88a5b9e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee88a5ba70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fee88a5bb00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fee88a5bb90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee88a5bc20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fee88a5bcb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee88a5bd40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee88a5bdd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee88a5be60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fee88a9ddb0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 10010624,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651778324.6485589,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYa7Dtcm3a64AptuDuwmLOG8XI6eniJNwAAgD8AAIA/zRp1PMNpcbrrtLo80tAnOaxTgrY5bh04AAAAAAAAAADNRRs+myuAP3kMMj4dz0u/n8C8Plj3BDwAAAAAAAAAAACPVj3R+kc+CSsdviXECr86cag8RcwAvgAAAAAAAAAAM527vE/APryKIvU710x1PAEJsL1tok49AACAPwAAgD8NU5s9pJXfPcowyr0OuRG/WKD3PU5bxL0AAAAAAAAAAIBKXD3gkOs+8uw/vb0gOL9i9Q0+AjacvAAAAAAAAAAAGjdXvVwXHLpyzpy1yaaSr8t6Eruksq80AACAPwAAgD+G0T6+IqOJPg9rAT9cff++1ERvvUwBpj4AAAAAAAAAAJVUg75Jq4s/xjPMvqxVPb/l3w6/vS/PvQAAAAAAAAAAwO7FPYRtfj+KEbk+gvdfvwsiVj7PsI8+AAAAAAAAAACanJm8Bga3P7qZHr9WMoI+l2J7PANBbz0AAAAAAAAAADPHOz4MMIA/NNumPh5nHL9zOOE+4m8gPgAAAAAAAAAAbSQmvoyPFz5itfw+IxnevmVzILyDBp0+AAAAAAAAAAAN/bA9K6mTPcI27L5DC7y+W1gFvqKZr74AAAAAAAAAAO0hMj53LFE/btQkPmlrOb+8oeQ+HHaLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHjS77u15dECUhpRSlIwBbJRLs4wBdJRHQLtqQ41xbSt1fZQoaAZoCWgPQwhBDHTtiwhzQJSGlFKUaBVLwGgWR0C7ak/G2kSFdX2UKGgGaAloD0MIL6TDQ9iwc0CUhpRSlGgVS7BoFkdAu2pXokiUxHV9lChoBmgJaA9DCKxUUFE17HNAlIaUUpRoFUvKaBZHQLtqYd/8VHp1fZQoaAZoCWgPQwikNJvHYVR0QJSGlFKUaBVL0WgWR0C7aodShrWRdX2UKGgGaAloD0MIO420VJ6HcUCUhpRSlGgVS8doFkdAu2qn/82rGXV9lChoBmgJaA9DCHo57L5jlnNAlIaUUpRoFUufaBZHQLtqqZ+x4Y91fZQoaAZoCWgPQwgo8bkTrElyQJSGlFKUaBVLuGgWR0C7arAs9SuRdX2UKGgGaAloD0MIbcZpiOqqcUCUhpRSlGgVS6JoFkdAu2qz1h9b5nV9lChoBmgJaA9DCK64OCo3KHNAlIaUUpRoFUvVaBZHQLtqvgUDdQB1fZQoaAZoCWgPQwiCjla15BFyQJSGlFKUaBVLtWgWR0C7asr/bTMJdX2UKGgGaAloD0MIXD0nvS+wckCUhpRSlGgVS9BoFkdAu2rh+3H7xnV9lChoBmgJaA9DCBFwCFXqTHJAlIaUUpRoFUu3aBZHQLtvfG1x82J1fZQoaAZoCWgPQwjkMm5qIHJxQJSGlFKUaBVLt2gWR0C7b6LTDwYtdX2UKGgGaAloD0MIXHNH/wtXc0CUhpRSlGgVS7xoFkdAu2+mJFb3XnV9lChoBmgJaA9DCO0qpPykbnBAlIaUUpRoFUumaBZHQLtvuPJaJRB1fZQoaAZoCWgPQwiLbr2mB2pxQJSGlFKUaBVLtWgWR0C7b8BWtEG8dX2UKGgGaAloD0MIMiJRaFmic0CUhpRSlGgVS79oFkdAu2/D+1jRUnV9lChoBmgJaA9DCDSBIhbx83JAlIaUUpRoFUvOaBZHQLtvyQEpy6t1fZQoaAZoCWgPQwhcBMb6xhpzQJSGlFKUaBVLvmgWR0C7b/bqY7aJdX2UKGgGaAloD0MICYm0jX9bckCUhpRSlGgVS6hoFkdAu3AIMRYigXV9lChoBmgJaA9DCK0yU1o/0XJAlIaUUpRoFUu1aBZHQLtwDB/I8yN1fZQoaAZoCWgPQwjrH0QyJNtxQJSGlFKUaBVLt2gWR0C7cBA0TDfndX2UKGgGaAloD0MIqdkDrUDzckCUhpRSlGgVS51oFkdAu3AT1vl2eXV9lChoBmgJaA9DCGNCzCWV2HNAlIaUUpRoFUu8aBZHQLtwKvjfek51fZQoaAZoCWgPQwjpgCTsW+NzQJSGlFKUaBVLymgWR0C7cCz+aScLdX2UKGgGaAloD0MIfgIoRlb1cECUhpRSlGgVS79oFkdAu3BSp++dsnV9lChoBmgJaA9DCIjYYOFkZXNAlIaUUpRoFUvOaBZHQLtwbnxaxHJ1fZQoaAZoCWgPQwgUsB2MmIVyQJSGlFKUaBVLuGgWR0C7cHqVII4VdX2UKGgGaAloD0MIMnIW9vRpckCUhpRSlGgVS69oFkdAu3CGfK6nSHV9lChoBmgJaA9DCM7drpdmjnNAlIaUUpRoFUvGaBZHQLtwj1pj+aV1fZQoaAZoCWgPQwhRvqCFBGJvQJSGlFKUaBVLqWgWR0C7cJAVfu1GdX2UKGgGaAloD0MIb59VZsoSdECUhpRSlGgVS7RoFkdAu3CUGA08/3V9lChoBmgJaA9DCKpm1lIAL3FAlIaUUpRoFUu6aBZHQLtwoCEYfnx1fZQoaAZoCWgPQwgr2hzndspwQJSGlFKUaBVLoWgWR0C7cLiBwuM/dX2UKGgGaAloD0MIP6w3aoXlcECUhpRSlGgVS5loFkdAu3DA52hZhnV9lChoBmgJaA9DCEBpqFHIi3JAlIaUUpRoFUupaBZHQLtw3PWxyGV1fZQoaAZoCWgPQwj59NiWAUNyQJSGlFKUaBVLrWgWR0C7cN4h2W6cdX2UKGgGaAloD0MImgtcHutdcUCUhpRSlGgVS7hoFkdAu3DyqEOAiHV9lChoBmgJaA9DCKw3aoVpFXJAlIaUUpRoFUusaBZHQLtw/eEqUeN1fZQoaAZoCWgPQwimnC/23r9zQJSGlFKUaBVLu2gWR0C7cQ60hNdrdX2UKGgGaAloD0MIO/vKg3TZcUCUhpRSlGgVS7xoFkdAu3E3jS5RTHV9lChoBmgJaA9DCN8bQwDwGHJAlIaUUpRoFUuaaBZHQLtxUDLr5Zd1fZQoaAZoCWgPQwilhGBV/Qd0QJSGlFKUaBVLu2gWR0C7cVNlI3BIdX2UKGgGaAloD0MIJnFWRE2eckCUhpRSlGgVS6poFkdAu3FWgJ1JUnV9lChoBmgJaA9DCCyBlNj1nHFAlIaUUpRoFUu7aBZHQLtxXyWAwwl1fZQoaAZoCWgPQwjfT42XLp5zQJSGlFKUaBVLrWgWR0C7cWLulXRxdX2UKGgGaAloD0MIuI/cmrQZckCUhpRSlGgVS75oFkdAu3F1pDeCTXV9lChoBmgJaA9DCN481SF39XNAlIaUUpRoFUuwaBZHQLtxdLi++M91fZQoaAZoCWgPQwgxtDo5A5xxQJSGlFKUaBVLp2gWR0C7cYiGetjkdX2UKGgGaAloD0MIaLJ/ngafcECUhpRSlGgVS7FoFkdAu3GMdvKlpHV9lChoBmgJaA9DCL+er1lu33FAlIaUUpRoFUuraBZHQLtxp9pRGc51fZQoaAZoCWgPQwgiwr8ImsVxQJSGlFKUaBVLs2gWR0C7cbICMglodX2UKGgGaAloD0MIFhbcD3idcUCUhpRSlGgVS6hoFkdAu3HDlhgE2nV9lChoBmgJaA9DCG9IowKnQ3RAlIaUUpRoFUvNaBZHQLtx49V3ljp1fZQoaAZoCWgPQwh4DmWoCnNyQJSGlFKUaBVLumgWR0C7cejrE9+xdX2UKGgGaAloD0MISfJc30d8cUCUhpRSlGgVS6ZoFkdAu3H6Mju8b3V9lChoBmgJaA9DCFbXoZqSV3FAlIaUUpRoFUuWaBZHQLtx/xO+IuZ1fZQoaAZoCWgPQwgEVDiCVGxxQJSGlFKUaBVLr2gWR0C7cixrBTGYdX2UKGgGaAloD0MIowOSsK91c0CUhpRSlGgVS7hoFkdAu3I7v3JxN3V9lChoBmgJaA9DCMrgKHl1d3NAlIaUUpRoFUvHaBZHQLtyQSVnmJZ1fZQoaAZoCWgPQwi2oWKcf2RwQJSGlFKUaBVLrGgWR0C7ckB8c+7ldX2UKGgGaAloD0MIh07Pu/EickCUhpRSlGgVS8RoFkdAu3Jdr433pXV9lChoBmgJaA9DCJvj3CYcn3JAlIaUUpRoFUuzaBZHQLtyXsS00Fd1fZQoaAZoCWgPQwg7cqQzsIxxQJSGlFKUaBVLsmgWR0C7cmGlQ/HHdX2UKGgGaAloD0MI4j0HluPrcECUhpRSlGgVS6ZoFkdAu3JuFSKm9HV9lChoBmgJaA9DCEi/fR04KXRAlIaUUpRoFUv1aBZHQLtydBHCoCN1fZQoaAZoCWgPQwiv0AfL2NRxQJSGlFKUaBVLpGgWR0C7cnXe7+UAdX2UKGgGaAloD0MIglZgyCqdcUCUhpRSlGgVS6JoFkdAu3KFBHCoCXV9lChoBmgJaA9DCH089N0tgGhAlIaUUpRoFU3oA2gWR0C7cpvQnhKldX2UKGgGaAloD0MIfEPhs3ULdECUhpRSlGgVS75oFkdAu3LFZJTVD3V9lChoBmgJaA9DCFCr6A/NkHFAlIaUUpRoFUuwaBZHQLtyzwlByCF1fZQoaAZoCWgPQwi0Vx8P/VdxQJSGlFKUaBVLxGgWR0C7cuGFzuF6dX2UKGgGaAloD0MItRg8TPvAckCUhpRSlGgVS9hoFkdAu3Loe6qbSnV9lChoBmgJaA9DCF6+9WH9v3BAlIaUUpRoFUuvaBZHQLtzBRZU1ht1fZQoaAZoCWgPQwhWSs/0Et9uQJSGlFKUaBVLmmgWR0C7cxDZDiOvdX2UKGgGaAloD0MIycnErQIYckCUhpRSlGgVS6BoFkdAu3MUIY3vQXV9lChoBmgJaA9DCJC7CFPUvnNAlIaUUpRoFUvJaBZHQLtzFKIi1Rd1fZQoaAZoCWgPQwhtNlZiXs5xQJSGlFKUaBVLumgWR0C7cxZHy3CsdX2UKGgGaAloD0MIhlW8kTlnckCUhpRSlGgVS8ZoFkdAu3MhXo1UEXV9lChoBmgJaA9DCA1xrItbH3JAlIaUUpRoFUuuaBZHQLtzI0Zm7J51fZQoaAZoCWgPQwj+8smKIV1xQJSGlFKUaBVLm2gWR0C7cyQj2SMcdX2UKGgGaAloD0MIpztPPGdUcUCUhpRSlGgVS6xoFkdAu3MzFm4Aj3V9lChoBmgJaA9DCAVtcvhkbHNAlIaUUpRoFUvLaBZHQLtzTM85jpd1fZQoaAZoCWgPQwhq+1dWmg9yQJSGlFKUaBVLpGgWR0C7c09PP9k0dX2UKGgGaAloD0MIfZV87O79cUCUhpRSlGgVS75oFkdAu3NUyrPt2XV9lChoBmgJaA9DCGX+0TdpXnFAlIaUUpRoFUugaBZHQLtzb9AX2uh1fZQoaAZoCWgPQwgqApzeRSpwQJSGlFKUaBVLn2gWR0C7c3cVclgMdX2UKGgGaAloD0MIuaerO1bVcUCUhpRSlGgVS7RoFkdAu3OrKDCgsnV9lChoBmgJaA9DCPHZOjiY73FAlIaUUpRoFUu8aBZHQLtzrb8WKuV1fZQoaAZoCWgPQwjhm6bPTgZwQJSGlFKUaBVLnWgWR0C7c6+xwAEMdX2UKGgGaAloD0MIZRpNLsa5b0CUhpRSlGgVS6NoFkdAu3PIP6KtP3V9lChoBmgJaA9DCHf4a7KGEHNAlIaUUpRoFUunaBZHQLtzz8HObAl1fZQoaAZoCWgPQwiWCiqq/vhzQJSGlFKUaBVLv2gWR0C7c+ewosqbdX2UKGgGaAloD0MIlba4xicpdECUhpRSlGgVS69oFkdAu3Pp7D2rXHV9lChoBmgJaA9DCGjKTj9o2XJAlIaUUpRoFUvAaBZHQLtz7SIgvDh1fZQoaAZoCWgPQwjOUUfHVSJxQJSGlFKUaBVLtWgWR0C7c/JRwZO0dX2UKGgGaAloD0MIOQ68Wm6jc0CUhpRSlGgVS8BoFkdAu3P7OGCZnnV9lChoBmgJaA9DCFVntcAeC3JAlIaUUpRoFUu6aBZHQLt0CCAc1fp1fZQoaAZoCWgPQwizCTAsf29zQJSGlFKUaBVLtWgWR0C7dB8lLOAzdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2444,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7e78cd96062fe68fd0cded45c12a583070b160c06ec550eaa733de2333c9e7d
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0e35b31ef6f2d1d7b2e95d58c953d90a000b114dc23c2a0586dad057cf98248
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ff3cfa471603ae1506a9945fbe276452fe10098e780f6829f2542ce8c3dc1d6
|
3 |
+
size 201324
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 292.9663419779685, "std_reward": 12.89326229241089, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T21:21:24.145952"}
|