--- library_name: transformers language: - eng license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng-forproject results: [] --- # speaker-segmentation-fine-tuned-callhome-eng-forproject This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.4600 - Model Preparation Time: 0.0051 - Der: 0.1818 - False Alarm: 0.0578 - Missed Detection: 0.0721 - Confusion: 0.0518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.392 | 1.0 | 362 | 0.4730 | 0.0051 | 0.1926 | 0.0622 | 0.0736 | 0.0568 | | 0.4053 | 2.0 | 724 | 0.4586 | 0.0051 | 0.1838 | 0.0625 | 0.0704 | 0.0509 | | 0.3865 | 3.0 | 1086 | 0.4537 | 0.0051 | 0.1811 | 0.0574 | 0.0723 | 0.0514 | | 0.3571 | 4.0 | 1448 | 0.4570 | 0.0051 | 0.1805 | 0.0551 | 0.0740 | 0.0514 | | 0.3409 | 5.0 | 1810 | 0.4600 | 0.0051 | 0.1818 | 0.0578 | 0.0721 | 0.0518 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1