File size: 2,469 Bytes
02b2725
 
 
 
 
 
 
 
 
 
 
 
 
 
93b2b84
 
 
02b2725
 
 
 
45acf22
02b2725
 
 
93b2b84
02b2725
 
 
93b2b84
02b2725
 
 
93b2b84
02b2725
 
 
 
 
 
45acf22
93b2b84
 
02b2725
 
 
 
 
45acf22
02b2725
 
 
45acf22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b2725
 
 
 
93b2b84
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- da
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- alexandrainst/nst-da
model-index:
- name: speecht5_tts-finetuned-nst-da
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_tts-finetuned-nst-da

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the NST Danish ASR Database dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.4445        | 1.0   | 9429   | 0.4100          |
| 0.4169        | 2.0   | 18858  | 0.3955          |
| 0.412         | 3.0   | 28287  | 0.3882          |
| 0.3982        | 4.0   | 37716  | 0.3826          |
| 0.4032        | 5.0   | 47145  | 0.3817          |
| 0.3951        | 6.0   | 56574  | 0.3782          |
| 0.3971        | 7.0   | 66003  | 0.3782          |
| 0.395         | 8.0   | 75432  | 0.3757          |
| 0.3952        | 9.0   | 84861  | 0.3749          |
| 0.3835        | 10.0  | 94290  | 0.3740          |
| 0.3863        | 11.0  | 103719 | 0.3754          |
| 0.3845        | 12.0  | 113148 | 0.3732          |
| 0.3788        | 13.0  | 122577 | 0.3715          |
| 0.3834        | 14.0  | 132006 | 0.3717          |
| 0.3894        | 15.0  | 141435 | 0.3718          |
| 0.3845        | 16.0  | 150864 | 0.3714          |
| 0.3823        | 17.0  | 160293 | 0.3692          |
| 0.3858        | 18.0  | 169722 | 0.3703          |
| 0.3919        | 19.0  | 179151 | 0.3716          |
| 0.3906        | 20.0  | 188580 | 0.3709          |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2