--- library_name: peft language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - JacobLinCool/ami-disfluent model-index: - name: whisper-large-v3-turbo-verbatim-3-lora results: [] --- # whisper-large-v3-turbo-verbatim-3-lora This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/ami-disfluent dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1998 - eval_wer: 9.9454 - eval_cer: 4.1038 - eval_decode_runtime: 108.1653 - eval_wer_runtime: 0.0730 - eval_cer_runtime: 0.0960 - eval_runtime: 182.769 - eval_samples_per_second: 10.352 - eval_steps_per_second: 0.328 - epoch: 0.1 - step: 100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Framework versions - PEFT 0.14.0 - Transformers 4.48.0 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0