Uploaded PPO agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-lunar-lander-v2.zip +3 -0
- ppo-lunar-lander-v2/_stable_baselines3_version +1 -0
- ppo-lunar-lander-v2/data +99 -0
- ppo-lunar-lander-v2/policy.optimizer.pth +3 -0
- ppo-lunar-lander-v2/policy.pth +3 -0
- ppo-lunar-lander-v2/pytorch_variables.pth +3 -0
- ppo-lunar-lander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 240.31 +/- 69.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0af0a9c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0af0a9cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0af0a9d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0af0a9e10>", "_build": "<function ActorCriticPolicy._build at 0x7fe0af0a9ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe0af0a9f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0af0a9fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0af0aa050>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe0af0aa0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0af0aa170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0af0aa200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0af0aa290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0af042140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2500608, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700547179196232581, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE0zyL2U2NY9eg/6PcfQr75XO9W7wF+ePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE4xzNliBqMAWyUS7eMAXSUR0C3a6txAB1cdX2UKGgGR0Bx1xMM7U5NaAdL1WgIR0C3bAvqkdmydX2UKGgGR0Bx75HOKO1faAdL12gIR0C3bHJMlC1JdX2UKGgGR0BoMnEfkmx/aAdN6ANoCEdAt29GkN4JNXV9lChoBkdAP80YXO4XoGgHS4hoCEdAt2+Wa+evp3V9lChoBkdAcXoJJ5E+gWgHS9FoCEdAt3CYcBEKE3V9lChoBkdAcn3zhxYJV2gHS8BoCEdAt3DwfcN6PnV9lChoBkdASeY1FYuCgGgHS6poCEdAt3E8cGTs6nV9lChoBkdAcjuGorFwUGgHS81oCEdAt3GXqfOD8XV9lChoBkdAb67+iJwbVGgHS7NoCEdAt3HmQtBfKXV9lChoBkdAcYZPomoitGgHS8xoCEdAt3KuqvNeMXV9lChoBkdAcPI3os7MgWgHS7loCEdAt3MEcvM8o3V9lChoBkdAcnRvTPSlWWgHS7JoCEdAt3NSBMBZIXV9lChoBkdATc4KD0163WgHS4doCEdAt3OPtCzC13V9lChoBkdAci1dbgTAWWgHS6xoCEdAt3PaebutwXV9lChoBkdAciPJ+UhV2mgHS+toCEdAt3RCJpFkQXV9lChoBkdAcnNxCY1HfGgHS+VoCEdAt3UQAcT8HnV9lChoBkdAcbW4VARkE2gHS8poCEdAt3VqFUQ043V9lChoBkdAcfL/1xsEaGgHS9FoCEdAt3XBTuOS4nV9lChoBkdAcT7GKhtcfWgHS7hoCEdAt3YYXHim23V9lChoBkdAcWIgmJFb3WgHS9BoCEdAt3ZzGrCFbnV9lChoBkdAcZQxRl6JImgHS9loCEdAt3dATVUdaXV9lChoBkdAcKoe4TbnHWgHTQ0BaAhHQLd3t5mAbyZ1fZQoaAZHQEaqyfL9uP5oB0ugaAhHQLd3/40/GER1fZQoaAZHQHDo996Tnq5oB0ukaAhHQLd4R+PBBRh1fZQoaAZHQHFZ2J3xFy9oB0u0aAhHQLd4lNCqp991fZQoaAZHQGzMdCeEqUhoB0vhaAhHQLd5YWOIZZV1fZQoaAZHQHBptozvZyxoB0u1aAhHQLd5sgydnTR1fZQoaAZHQHAYxoVVPvdoB0vHaAhHQLd6CVENOM51fZQoaAZHQHLNHwgDA8BoB0u8aAhHQLd6YjENvwV1fZQoaAZHQHGPl+Vkc0doB0vcaAhHQLd64sAeaKF1fZQoaAZHQHCSMUM5OrRoB0vNaAhHQLd764593KV1fZQoaAZHQHEJrOE/SploB0u3aAhHQLd8WdDpkf91fZQoaAZHQEgkIN3GGVRoB0uhaAhHQLd8viwSrYJ1fZQoaAZHQHGF8ImgJ1JoB0upaAhHQLd9I2606YF1fZQoaAZHQHDFmrjo6jpoB0uhaAhHQLd9kKOT7l91fZQoaAZHQHN01/6O5rhoB0vPaAhHQLd98DtgKF91fZQoaAZHQHHOPZ/Tb35oB0u9aAhHQLd+sfpUxVR1fZQoaAZHQHBgkHhS9/VoB0vJaAhHQLd/DO1OTJR1fZQoaAZHQHFGFUMoc71oB0vfaAhHQLd/bUjLSu11fZQoaAZHQFJ02WpqASZoB0uBaAhHQLd/p1uzhP11fZQoaAZHQHJ6EsFt8/loB0v2aAhHQLeADeuFHrh1fZQoaAZHQHHXFyBCladoB0vqaAhHQLeA50QK8cx1fZQoaAZHQHEHQKF7D2toB0uyaAhHQLeBM1Tzd1x1fZQoaAZHQHHEqdxyXD5oB0vSaAhHQLeBlc5sCT51fZQoaAZHQHHesUmD15BoB0vtaAhHQLeB/qDK5kN1fZQoaAZHQESd0V8CxNZoB0ugaAhHQLeCQcAzYVZ1fZQoaAZHQHFjh0Qsf7toB0u3aAhHQLeC//9Hc1x1fZQoaAZHQEKc0ojOcDtoB0uGaAhHQLeDPGgSOBF1fZQoaAZHQHEYogRsdktoB0uuaAhHQLeDjI6r/851fZQoaAZHQHMSnV09yLhoB0vMaAhHQLeD6urIYFd1fZQoaAZHQD7fGkvboKVoB0uYaAhHQLeEK8c+7lJ1fZQoaAZHQHAqVchTwUhoB0u2aAhHQLeEf88La251fZQoaAZHQHIVv07KaG5oB0vFaAhHQLeFO8E3bVV1fZQoaAZHQHCPLNSqEOBoB0vpaAhHQLeFpLXtjTd1fZQoaAZHQHF3Eona37VoB0uyaAhHQLeF8z3AVO91fZQoaAZHQHFOlRtP559oB0vGaAhHQLeGRxPfsNV1fZQoaAZHQHD+IMrmQsBoB03jA2gIR0C3iKR//echdX2UKGgGR0A63neBQN1AaAdLjGgIR0C3iPM7hegMdX2UKGgGR0BzSiN+9allaAdLtWgIR0C3iV655JK8dX2UKGgGR0ByXom2LHdXaAdL8mgIR0C3iqhvrGBGdX2UKGgGR0BkJJ3cHnloaAdN6ANoCEdAt41Gxs2vS3V9lChoBkdASFhOclPac2gHS4BoCEdAt42GRyOrAHV9lChoBkdAZh6UxmCiAWgHTegDaAhHQLeP8yIYWLx1fZQoaAZHQHFO5Ig/1QJoB0vdaAhHQLeQYiWmgrZ1fZQoaAZHQHLa2WUr08NoB0u0aAhHQLeQvsJY1YR1fZQoaAZHQGP++9alk6NoB03oA2gIR0C3kvQcPvrodX2UKGgGR0BxwyIUJv5yaAdL4WgIR0C3k1kDEFW5dX2UKGgGR0BySHvVmSQpaAdL2WgIR0C3lCF/MGHIdX2UKGgGR0Bx741n/T9baAdL52gIR0C3lJDImw7ldX2UKGgGR0ByQwzyjHn2aAdL5GgIR0C3lPYl6Z6VdX2UKGgGR0Bw0mcawUxmaAdLqmgIR0C3lUMIiTt+dX2UKGgGR0ByBQAR02cbaAdL9GgIR0C3ldPdIoVmdX2UKGgGR0BkK9Zs9B8haAdN6ANoCEdAt5i2TibUgHV9lChoBkdAck6SPEKmbmgHS/1oCEdAt5mN9iMHbHV9lChoBkdAbhXTaTOgQGgHS7BoCEdAt5nbkPtlZ3V9lChoBkdAb4U0lZ5iVmgHS9xoCEdAt5o/OeJ53XV9lChoBkdASTcU/OdGzGgHS4FoCEdAt5p6g6EJ0HV9lChoBkdAN1ULhJiAlWgHS4ZoCEdAt5qx9c8klnV9lChoBkdAcJ8CDVYp2GgHS8JoCEdAt5sFIDoyK3V9lChoBkdAcYlvKlpGnWgHS7ZoCEdAt5vArwvxpnV9lChoBkdARXU+7lJYkmgHS2poCEdAt5vw/wAlwHV9lChoBkdAT73UF0PpZGgHS39oCEdAt5wnAeq7y3V9lChoBkdAZ8wM4tHx0GgHTegDaAhHQLeeQAMlTm51fZQoaAZHQHGfgZXMhX9oB0vPaAhHQLeem8zQ/ot1fZQoaAZHQD+RS1mapgloB0uTaAhHQLee2tqYZ2p1fZQoaAZHQGVqk0Jng51oB03oA2gIR0C3oQYwAU+LdX2UKGgGR0Bu4xBZ6lchaAdLwGgIR0C3oV1rIo3KdX2UKGgGR0BmE+YrrgO0aAdN6ANoCEdAt6PTLHMlknV9lChoBkdAcaMYUnG83GgHS8toCEdAt6TVybQTmHV9lChoBkdAcoux2jfvW2gHS7FoCEdAt6U74sVclnV9lChoBkdAcE8JHy3CsWgHS9hoCEdAt6XJgb6xgXV9lChoBkdAbx/O1v2oN2gHS7VoCEdAt6YdMmF8HHV9lChoBkdAcHTPSlWOqGgHS7xoCEdAt6Z0XyiEhHV9lChoBkdAcYyF7D2rXGgHS69oCEdAt6a/2pQ1rXV9lChoBkdAcBbwBYFJQWgHS8NoCEdAt6eGJFb3XnV9lChoBkdAcnSvIwM6R2gHS+BoCEdAt6fllyzXz3V9lChoBkdAcYp0b961LWgHS6NoCEdAt6guA8Swn3V9lChoBkdAROhFLFn7HmgHS35oCEdAt6hl2t+1B3V9lChoBkdAcmC6/IsAemgHS9xoCEdAt6jNZmqYJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12210, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-lunar-lander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63661e680b26b2609ef2bc8bae7c28220eafba8c42a1163cb5353a429372e5ee
|
3 |
+
size 147278
|
ppo-lunar-lander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-lunar-lander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0af0a9c60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0af0a9cf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0af0a9d80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0af0a9e10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe0af0a9ea0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe0af0a9f30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0af0a9fc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0af0aa050>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe0af0aa0e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0af0aa170>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0af0aa200>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0af0aa290>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe0af042140>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2500608,
|
25 |
+
"_total_timesteps": 2500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1700547179196232581,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE0zyL2U2NY9eg/6PcfQr75XO9W7wF+ePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00024320000000011,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE4xzNliBqMAWyUS7eMAXSUR0C3a6txAB1cdX2UKGgGR0Bx1xMM7U5NaAdL1WgIR0C3bAvqkdmydX2UKGgGR0Bx75HOKO1faAdL12gIR0C3bHJMlC1JdX2UKGgGR0BoMnEfkmx/aAdN6ANoCEdAt29GkN4JNXV9lChoBkdAP80YXO4XoGgHS4hoCEdAt2+Wa+evp3V9lChoBkdAcXoJJ5E+gWgHS9FoCEdAt3CYcBEKE3V9lChoBkdAcn3zhxYJV2gHS8BoCEdAt3DwfcN6PnV9lChoBkdASeY1FYuCgGgHS6poCEdAt3E8cGTs6nV9lChoBkdAcjuGorFwUGgHS81oCEdAt3GXqfOD8XV9lChoBkdAb67+iJwbVGgHS7NoCEdAt3HmQtBfKXV9lChoBkdAcYZPomoitGgHS8xoCEdAt3KuqvNeMXV9lChoBkdAcPI3os7MgWgHS7loCEdAt3MEcvM8o3V9lChoBkdAcnRvTPSlWWgHS7JoCEdAt3NSBMBZIXV9lChoBkdATc4KD0163WgHS4doCEdAt3OPtCzC13V9lChoBkdAci1dbgTAWWgHS6xoCEdAt3PaebutwXV9lChoBkdAciPJ+UhV2mgHS+toCEdAt3RCJpFkQXV9lChoBkdAcnNxCY1HfGgHS+VoCEdAt3UQAcT8HnV9lChoBkdAcbW4VARkE2gHS8poCEdAt3VqFUQ043V9lChoBkdAcfL/1xsEaGgHS9FoCEdAt3XBTuOS4nV9lChoBkdAcT7GKhtcfWgHS7hoCEdAt3YYXHim23V9lChoBkdAcWIgmJFb3WgHS9BoCEdAt3ZzGrCFbnV9lChoBkdAcZQxRl6JImgHS9loCEdAt3dATVUdaXV9lChoBkdAcKoe4TbnHWgHTQ0BaAhHQLd3t5mAbyZ1fZQoaAZHQEaqyfL9uP5oB0ugaAhHQLd3/40/GER1fZQoaAZHQHDo996Tnq5oB0ukaAhHQLd4R+PBBRh1fZQoaAZHQHFZ2J3xFy9oB0u0aAhHQLd4lNCqp991fZQoaAZHQGzMdCeEqUhoB0vhaAhHQLd5YWOIZZV1fZQoaAZHQHBptozvZyxoB0u1aAhHQLd5sgydnTR1fZQoaAZHQHAYxoVVPvdoB0vHaAhHQLd6CVENOM51fZQoaAZHQHLNHwgDA8BoB0u8aAhHQLd6YjENvwV1fZQoaAZHQHGPl+Vkc0doB0vcaAhHQLd64sAeaKF1fZQoaAZHQHCSMUM5OrRoB0vNaAhHQLd764593KV1fZQoaAZHQHEJrOE/SploB0u3aAhHQLd8WdDpkf91fZQoaAZHQEgkIN3GGVRoB0uhaAhHQLd8viwSrYJ1fZQoaAZHQHGF8ImgJ1JoB0upaAhHQLd9I2606YF1fZQoaAZHQHDFmrjo6jpoB0uhaAhHQLd9kKOT7l91fZQoaAZHQHN01/6O5rhoB0vPaAhHQLd98DtgKF91fZQoaAZHQHHOPZ/Tb35oB0u9aAhHQLd+sfpUxVR1fZQoaAZHQHBgkHhS9/VoB0vJaAhHQLd/DO1OTJR1fZQoaAZHQHFGFUMoc71oB0vfaAhHQLd/bUjLSu11fZQoaAZHQFJ02WpqASZoB0uBaAhHQLd/p1uzhP11fZQoaAZHQHJ6EsFt8/loB0v2aAhHQLeADeuFHrh1fZQoaAZHQHHXFyBCladoB0vqaAhHQLeA50QK8cx1fZQoaAZHQHEHQKF7D2toB0uyaAhHQLeBM1Tzd1x1fZQoaAZHQHHEqdxyXD5oB0vSaAhHQLeBlc5sCT51fZQoaAZHQHHesUmD15BoB0vtaAhHQLeB/qDK5kN1fZQoaAZHQESd0V8CxNZoB0ugaAhHQLeCQcAzYVZ1fZQoaAZHQHFjh0Qsf7toB0u3aAhHQLeC//9Hc1x1fZQoaAZHQEKc0ojOcDtoB0uGaAhHQLeDPGgSOBF1fZQoaAZHQHEYogRsdktoB0uuaAhHQLeDjI6r/851fZQoaAZHQHMSnV09yLhoB0vMaAhHQLeD6urIYFd1fZQoaAZHQD7fGkvboKVoB0uYaAhHQLeEK8c+7lJ1fZQoaAZHQHAqVchTwUhoB0u2aAhHQLeEf88La251fZQoaAZHQHIVv07KaG5oB0vFaAhHQLeFO8E3bVV1fZQoaAZHQHCPLNSqEOBoB0vpaAhHQLeFpLXtjTd1fZQoaAZHQHF3Eona37VoB0uyaAhHQLeF8z3AVO91fZQoaAZHQHFOlRtP559oB0vGaAhHQLeGRxPfsNV1fZQoaAZHQHD+IMrmQsBoB03jA2gIR0C3iKR//echdX2UKGgGR0A63neBQN1AaAdLjGgIR0C3iPM7hegMdX2UKGgGR0BzSiN+9allaAdLtWgIR0C3iV655JK8dX2UKGgGR0ByXom2LHdXaAdL8mgIR0C3iqhvrGBGdX2UKGgGR0BkJJ3cHnloaAdN6ANoCEdAt41Gxs2vS3V9lChoBkdASFhOclPac2gHS4BoCEdAt42GRyOrAHV9lChoBkdAZh6UxmCiAWgHTegDaAhHQLeP8yIYWLx1fZQoaAZHQHFO5Ig/1QJoB0vdaAhHQLeQYiWmgrZ1fZQoaAZHQHLa2WUr08NoB0u0aAhHQLeQvsJY1YR1fZQoaAZHQGP++9alk6NoB03oA2gIR0C3kvQcPvrodX2UKGgGR0BxwyIUJv5yaAdL4WgIR0C3k1kDEFW5dX2UKGgGR0BySHvVmSQpaAdL2WgIR0C3lCF/MGHIdX2UKGgGR0Bx741n/T9baAdL52gIR0C3lJDImw7ldX2UKGgGR0ByQwzyjHn2aAdL5GgIR0C3lPYl6Z6VdX2UKGgGR0Bw0mcawUxmaAdLqmgIR0C3lUMIiTt+dX2UKGgGR0ByBQAR02cbaAdL9GgIR0C3ldPdIoVmdX2UKGgGR0BkK9Zs9B8haAdN6ANoCEdAt5i2TibUgHV9lChoBkdAck6SPEKmbmgHS/1oCEdAt5mN9iMHbHV9lChoBkdAbhXTaTOgQGgHS7BoCEdAt5nbkPtlZ3V9lChoBkdAb4U0lZ5iVmgHS9xoCEdAt5o/OeJ53XV9lChoBkdASTcU/OdGzGgHS4FoCEdAt5p6g6EJ0HV9lChoBkdAN1ULhJiAlWgHS4ZoCEdAt5qx9c8klnV9lChoBkdAcJ8CDVYp2GgHS8JoCEdAt5sFIDoyK3V9lChoBkdAcYlvKlpGnWgHS7ZoCEdAt5vArwvxpnV9lChoBkdARXU+7lJYkmgHS2poCEdAt5vw/wAlwHV9lChoBkdAT73UF0PpZGgHS39oCEdAt5wnAeq7y3V9lChoBkdAZ8wM4tHx0GgHTegDaAhHQLeeQAMlTm51fZQoaAZHQHGfgZXMhX9oB0vPaAhHQLeem8zQ/ot1fZQoaAZHQD+RS1mapgloB0uTaAhHQLee2tqYZ2p1fZQoaAZHQGVqk0Jng51oB03oA2gIR0C3oQYwAU+LdX2UKGgGR0Bu4xBZ6lchaAdLwGgIR0C3oV1rIo3KdX2UKGgGR0BmE+YrrgO0aAdN6ANoCEdAt6PTLHMlknV9lChoBkdAcaMYUnG83GgHS8toCEdAt6TVybQTmHV9lChoBkdAcoux2jfvW2gHS7FoCEdAt6U74sVclnV9lChoBkdAcE8JHy3CsWgHS9hoCEdAt6XJgb6xgXV9lChoBkdAbx/O1v2oN2gHS7VoCEdAt6YdMmF8HHV9lChoBkdAcHTPSlWOqGgHS7xoCEdAt6Z0XyiEhHV9lChoBkdAcYyF7D2rXGgHS69oCEdAt6a/2pQ1rXV9lChoBkdAcBbwBYFJQWgHS8NoCEdAt6eGJFb3XnV9lChoBkdAcnSvIwM6R2gHS+BoCEdAt6fllyzXz3V9lChoBkdAcYp0b961LWgHS6NoCEdAt6guA8Swn3V9lChoBkdAROhFLFn7HmgHS35oCEdAt6hl2t+1B3V9lChoBkdAcmC6/IsAemgHS9xoCEdAt6jNZmqYJHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 12210,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.995,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-lunar-lander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7e7cfb079a73fe51a1402ca0fe8c382be31c2a2fe07ebdc08c831c4947d36cb
|
3 |
+
size 88362
|
ppo-lunar-lander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:488fcc73abfd01187156893e6b8ae77377635bac4852d318cd36beabc05702c4
|
3 |
+
size 43762
|
ppo-lunar-lander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-lunar-lander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (150 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 240.31185197008594, "std_reward": 69.19105987754293, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-21T07:52:15.311836"}
|