UpsideDownDetector / observations.py
Jauhar's picture
final commit to hf
deb7039
raw
history blame
1.74 kB
import torch
import matplotlib.pyplot as plt
import numpy as np
def pred_label(model, img):
model = model.to('cpu')
img = img.unsqueeze(0)
logits = model(img)
pred_probab = torch.nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
return y_pred
def save_image(img, title, count):
fig, ax = plt.subplots()
imgplot = ax.imshow(img, interpolation='bicubic')
ax.spines['top'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticks([])
ax.set_yticks([])
# imgplot = plt.imshow(img, interpolation='bicubic')
plt.title(title)
plt.savefig('./viz/img' + str(count))
def observations(model, testloader):
for imgs, labels in testloader:
images = [imgs[0].permute(1, 2, 0),
imgs[1].permute(1, 2, 0),
imgs[2].permute(1, 2, 0),
imgs[3].permute(1, 2, 0),
imgs[4].permute(1, 2, 0)]
pred_label1 = pred_label(model, imgs[0]).item()
pred_label2 = pred_label(model, imgs[1]).item()
pred_label3 = pred_label(model, imgs[2]).item()
pred_label4 = pred_label(model, imgs[3]).item()
pred_label5 = pred_label(model, imgs[4]).item()
titles = ["Pred: {}, Actual: {}".format(pred_label1, labels[0]),
"Pred: {}, Actual: {}".format(pred_label2, labels[1]),
"Pred: {}, Actual: {}".format(pred_label3, labels[2]),
"Pred: {}, Actual: {}".format(pred_label4, labels[3]),
"Pred: {}, Actual: {}".format(pred_label5, labels[4])]
count = 1
for image, title in zip(images, titles):
save_image(image, title, count)
count += 1
break