|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch NEW model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
ModelOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
try: |
|
import xformers.ops as xops |
|
except ImportError as e: |
|
xops = None |
|
|
|
from .configuration import NewConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
class IndexFirstAxis(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input, indices): |
|
ctx.save_for_backward(indices) |
|
assert input.ndim >= 2 |
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] |
|
second_dim = other_shape.numel() |
|
|
|
|
|
|
|
|
|
|
|
return torch.gather( |
|
input.view(ctx.first_axis_dim, second_dim), |
|
0, |
|
indices.unsqueeze(-1).expand(indices.size(0), second_dim) |
|
).reshape(-1, *other_shape) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
(indices,) = ctx.saved_tensors |
|
assert grad_output.ndim >= 2 |
|
other_shape = grad_output.shape[1:] |
|
|
|
grad_output = grad_output.view(grad_output.size(0), other_shape.numel()) |
|
grad_input = torch.zeros( |
|
[ctx.first_axis_dim, grad_output.shape[1]], |
|
device=grad_output.device, |
|
dtype=grad_output.dtype, |
|
) |
|
|
|
|
|
|
|
grad_input.scatter_( |
|
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output |
|
) |
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None |
|
|
|
|
|
index_first_axis = IndexFirstAxis.apply |
|
|
|
|
|
def unpad_input(hidden_states, attention_mask=None, indices=None): |
|
""" |
|
Arguments: |
|
hidden_states: (batch, seqlen, ...) |
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. |
|
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence. |
|
Return: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
""" |
|
if indices is None: |
|
assert attention_mask is not None |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:]) |
|
return index_first_axis(hidden_states, indices) |
|
|
|
|
|
class IndexPutFirstAxis(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
values: torch.Tensor, |
|
indices: torch.Tensor, |
|
first_axis_dim |
|
) -> torch.Tensor: |
|
ctx.save_for_backward(indices) |
|
assert indices.ndim == 1 |
|
assert values.ndim >= 2 |
|
output = torch.zeros( |
|
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype |
|
) |
|
output[indices] = values |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]: |
|
indices, = ctx.saved_tensors |
|
grad_values = grad_output[indices] |
|
return grad_values, None, None |
|
|
|
|
|
index_put_first_axis = IndexPutFirstAxis.apply |
|
|
|
|
|
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor: |
|
"""Add padding to sequences. |
|
|
|
Arguments: |
|
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()` |
|
batch: int batch_size |
|
seqlen: int max sequence length |
|
|
|
Returns: |
|
inputs: (batch, seqlen, ...) |
|
""" |
|
output = index_put_first_axis(inputs, indices, batch * seqlen) |
|
return output.view(batch, seqlen, *inputs.shape[1:]) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos, sin = cos.to(q.dtype), sin.to(q.dtype) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class NTKScalingRotaryEmbedding(RotaryEmbedding): |
|
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """ |
|
|
|
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None): |
|
self.scaling_factor = scaling_factor |
|
self.mixed_b = mixed_b |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
max_position_embeddings = max_position_embeddings * self.scaling_factor |
|
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype()) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * (self.scaling_factor if self.mixed_b is None else 1) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
|
|
if self.mixed_b is None: |
|
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) |
|
else: |
|
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b |
|
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() |
|
inv_freq = inv_freq / lambda_1_m |
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
LAYER_NORM = { |
|
'layer_norm': nn.LayerNorm, |
|
'rms_norm': RMSNorm |
|
} |
|
|
|
|
|
class NewEmbeddings(nn.Module): |
|
""" |
|
Embedding and Unpadding. |
|
""" |
|
|
|
def __init__(self, config: NewConfig): |
|
super().__init__() |
|
self.padding_idx = config.pad_token_id |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx |
|
) |
|
|
|
self.position_embedding_type = config.position_embedding_type |
|
if self.position_embedding_type == 'absolute': |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx |
|
) |
|
elif self.position_embedding_type == 'rope': |
|
self._init_rope(config) |
|
else: |
|
raise ValueError |
|
|
|
self.type_vocab_size = config.type_vocab_size |
|
if self.type_vocab_size > 0: |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings), persistent=False |
|
) |
|
|
|
def _init_rope(self, config): |
|
kwargs = dict( |
|
dim=int(config.hidden_size / config.num_attention_heads), |
|
max_position_embeddings=config.max_position_embeddings, |
|
base=config.rope_theta |
|
) |
|
if config.rope_scaling is None: |
|
self.rotary_emb = RotaryEmbedding(**kwargs) |
|
else: |
|
kwargs.update(scaling_factor=config.rope_scaling["factor"]) |
|
scaling_type = config.rope_scaling["type"] |
|
if scaling_type == 'ntk': |
|
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None)) |
|
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs) |
|
|
|
|
|
|
|
|
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def forward( |
|
self, |
|
unpad_inputs: bool, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
length: Optional[List[int]] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]: |
|
""" |
|
""" |
|
if inputs_embeds is None: |
|
device, input_shape = input_ids.device, input_ids.shape |
|
else: |
|
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2] |
|
batch_size, seq_length = input_shape |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, device=device) |
|
if length is not None: |
|
for i, l in enumerate(length): |
|
attention_mask[i, l:] = 0 |
|
|
|
|
|
if unpad_inputs: |
|
attention_mask_bool = attention_mask.bool() |
|
if length is None: |
|
length = attention_mask.sum(-1).tolist() |
|
|
|
|
|
if inputs_embeds is None: |
|
if unpad_inputs: |
|
input_ids = input_ids[attention_mask_bool].unsqueeze(0) |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
else: |
|
if unpad_inputs: |
|
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0) |
|
embeddings = inputs_embeds |
|
|
|
|
|
if position_ids is None: |
|
if seq_length > self.position_ids.size(0): |
|
self.register_buffer( |
|
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False |
|
) |
|
if unpad_inputs: |
|
|
|
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0) |
|
else: |
|
|
|
position_ids = self.position_ids[:seq_length].expand(batch_size, -1) |
|
elif unpad_inputs: |
|
position_ids = position_ids[attention_mask_bool].unsqueeze(0) |
|
|
|
|
|
if self.position_embedding_type == 'rope': |
|
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length) |
|
rope_cos = rope_cos[position_ids].unsqueeze(2) |
|
rope_sin = rope_sin[position_ids].unsqueeze(2) |
|
rope_embeds = rope_cos, rope_sin |
|
else: |
|
rope_embeds = None |
|
|
|
if self.type_vocab_size > 0: |
|
if token_type_ids is None: |
|
token_type_ids = position_ids.mul(0) |
|
else: |
|
if self.type_vocab_size < 2: |
|
token_type_ids.mul_(0) |
|
if unpad_inputs: |
|
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0) |
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
embeddings = embeddings + token_type_embeddings |
|
|
|
|
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings, attention_mask, rope_embeds, length |
|
|
|
|
|
class NewAttention(nn.Module): |
|
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None): |
|
super().__init__() |
|
self.config = config |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
if pack_qkv is None: |
|
pack_qkv = config.pack_qkv |
|
self.pack_qkv = pack_qkv |
|
|
|
if self.pack_qkv: |
|
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True) |
|
else: |
|
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) |
|
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) |
|
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
|
|
if use_memory_efficient_attention is None: |
|
use_memory_efficient_attention = self.config.use_memory_efficient_attention |
|
self.use_memory_efficient_attention = use_memory_efficient_attention |
|
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention |
|
if self.use_memory_efficient_attention: |
|
assert self.memory_efficient_attention is not None, 'please install xformers' |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_bias: torch.FloatTensor, |
|
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, |
|
padding_inputs: Optional[Tuple] = None, |
|
attention_scale: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
qkv_inputs: Optional[Tuple] = None, |
|
) -> Tuple[torch.Tensor, ...]: |
|
shape_hd = (self.num_attention_heads, self.attention_head_size) |
|
|
|
if self.pack_qkv and qkv_inputs is None: |
|
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1) |
|
else: |
|
if qkv_inputs is None: |
|
qkv_inputs = (hidden_states, hidden_states, hidden_states) |
|
qkv_pack = [ |
|
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv') |
|
] |
|
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack] |
|
|
|
if self.config.position_embedding_type == 'rope': |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds) |
|
|
|
dtype = query_states.dtype |
|
|
|
if self.config.logn_attention_scale and attention_scale is not None: |
|
|
|
query_states = query_states * attention_scale.to(dtype) |
|
|
|
if padding_inputs is not None: |
|
query_states = pad_input(query_states.squeeze(), *padding_inputs) |
|
key_states = pad_input(key_states.squeeze(), *padding_inputs) |
|
value_states = pad_input(value_states.squeeze(), *padding_inputs) |
|
|
|
if self.use_memory_efficient_attention: |
|
assert self.memory_efficient_attention is not None, "xformers is not loaded" |
|
assert output_attentions is False, "memory_efficient_attention do not output attentions" |
|
assert head_mask is None, "Not support yet" |
|
attention_probs = None |
|
if torch.is_tensor(attention_bias): |
|
attention_bias = attention_bias.to(dtype) |
|
context_layer = self.memory_efficient_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_bias=attention_bias, |
|
p=self.dropout.p |
|
) |
|
else: |
|
if output_attentions and isinstance(self, NewSdpaAttention): |
|
raise RuntimeError("SDPA do not output attentions") |
|
context_layer, attention_probs = self._attention( |
|
query_states, key_states, value_states, attention_bias, head_mask |
|
) |
|
|
|
if padding_inputs is not None: |
|
context_layer = unpad_input(context_layer, indices=padding_inputs[0]) |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
|
|
attn_output = self.o_proj(context_layer) |
|
|
|
|
|
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,) |
|
return outputs |
|
|
|
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask): |
|
""" |
|
Args: |
|
q/k/v: (B, L, n_head, head_dim), |
|
Returns: |
|
attn_output: (B L, n_head, head_dim) |
|
""" |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_bias is not None: |
|
|
|
attention_scores = attention_scores + attention_bias |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
if self.dropout.p > 0: |
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_states) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
return context_layer, attention_probs |
|
|
|
|
|
class NewSdpaAttention(NewAttention): |
|
""" |
|
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
def __init__(self, config: NewConfig, **kwargs): |
|
super().__init__(config, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask): |
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states.transpose(1, 2), |
|
key_states.transpose(1, 2), |
|
value_states.transpose(1, 2), |
|
attn_mask=attention_bias, |
|
dropout_p=self.dropout.p if self.training else 0.0, |
|
) |
|
attn_output = attn_output.permute(0, 2, 1, 3).contiguous() |
|
return attn_output, None |
|
|
|
|
|
NEW_ATTENTION_CLASSES = { |
|
"eager": NewAttention, |
|
|
|
"sdpa": NewSdpaAttention, |
|
} |
|
|
|
|
|
class NewGatedMLP(nn.Module): |
|
""" |
|
GLU Variants Improve Transformer. |
|
""" |
|
|
|
def __init__(self, config: NewConfig): |
|
super().__init__() |
|
self.intermediate_size = config.intermediate_size |
|
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
if config.hidden_dropout_prob > 0: |
|
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob) |
|
else: |
|
self.hidden_dropout = None |
|
|
|
def forward(self, hidden_states): |
|
up_gate = self.up_gate_proj(hidden_states) |
|
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1) |
|
gate = self.act_fn(gate) |
|
gated_states = gate * up_states |
|
if self.hidden_dropout is not None: |
|
gated_states = self.hidden_dropout(gated_states) |
|
down_states = self.down_proj(gated_states) |
|
return down_states |
|
|
|
|
|
class NewLayer(nn.Module): |
|
def __init__( |
|
self, |
|
config: NewConfig, |
|
pack_qkv=None, |
|
use_memory_efficient_attention=None, |
|
attn_implementation=None |
|
): |
|
super().__init__() |
|
if attn_implementation is None: |
|
attn_implementation = config._attn_implementation |
|
if use_memory_efficient_attention is None: |
|
use_memory_efficient_attention = config.use_memory_efficient_attention |
|
if use_memory_efficient_attention: |
|
if attn_implementation != 'eager': |
|
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}") |
|
attn_implementation = 'eager' |
|
self.attention = NEW_ATTENTION_CLASSES[attn_implementation]( |
|
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention |
|
) |
|
self.mlp = NewGatedMLP(config) |
|
|
|
ln_class = LAYER_NORM[config.layer_norm_type] |
|
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps) |
|
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
if config.hidden_dropout_prob > 0: |
|
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob) |
|
else: |
|
self.hidden_dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_bias: torch.FloatTensor, |
|
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, |
|
padding_inputs: Optional[Tuple] = None, |
|
attention_scale: Optional[torch.FloatTensor] = None, |
|
subset_indices: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
qkv_inputs: Optional[Tuple] = None, |
|
) -> Tuple[torch.Tensor, ...]: |
|
|
|
residual = hidden_states if qkv_inputs is None else qkv_inputs[0] |
|
attention_outputs = self.attention( |
|
hidden_states, |
|
attention_bias, |
|
rope_embeds, |
|
padding_inputs, |
|
attention_scale, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
qkv_inputs=qkv_inputs, |
|
) |
|
hidden_states = attention_outputs[0] |
|
if self.hidden_dropout is not None: |
|
hidden_states = self.hidden_dropout(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
if subset_indices is not None: |
|
hidden_states = hidden_states[subset_indices] |
|
|
|
hidden_states = self.attn_ln(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.mlp(hidden_states) |
|
if self.hidden_dropout is not None: |
|
hidden_states = self.hidden_dropout(hidden_states) |
|
hidden_states = residual + hidden_states |
|
hidden_states = self.mlp_ln(hidden_states) |
|
|
|
|
|
outputs = (hidden_states,) + attention_outputs[1:] |
|
return outputs |
|
|
|
|
|
class NewEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_bias: Optional[torch.FloatTensor] = None, |
|
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, |
|
padding_inputs: Optional[Tuple] = None, |
|
attention_scale: Optional[torch.FloatTensor] = None, |
|
subset_indices: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if i >= len(self.layer) - 1: |
|
layer_subset_indices = subset_indices |
|
else: |
|
layer_subset_indices = None |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_bias, |
|
rope_embeds, |
|
padding_inputs, |
|
attention_scale, |
|
layer_subset_indices, |
|
layer_head_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_bias, |
|
rope_embeds, |
|
padding_inputs, |
|
attention_scale, |
|
layer_subset_indices, |
|
layer_head_mask, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
|
|
class NewPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class NewPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = NewConfig |
|
base_model_prefix = "new" |
|
supports_gradient_checkpointing = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class NewModel(NewPreTrainedModel): |
|
""" |
|
The bare New Model transformer outputting raw hidden-states without any specific head on top. |
|
""" |
|
|
|
def __init__(self, config: NewConfig, add_pooling_layer=False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = NewEmbeddings(config) |
|
self.encoder = NewEncoder(config) |
|
|
|
self.pooler = NewPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
length: Optional[List[int]] = None, |
|
subset_indices: Optional[torch.LongTensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
unpad_inputs: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: |
|
r""" |
|
length (`list` of length `batch_size`, *optional*): |
|
If is `None`, return padded `last_hidden_state`. |
|
subset_indices (): |
|
pass |
|
unpad_inputs (`bool`, *optional*): |
|
pass |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs |
|
output_padded = length is None |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings( |
|
unpad_inputs, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
length=length, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds |
|
) |
|
|
|
batch_size, seq_length = input_shape |
|
if unpad_inputs and self.config.use_memory_efficient_attention: |
|
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length) |
|
else: |
|
|
|
|
|
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape) |
|
if self.config.use_memory_efficient_attention: |
|
|
|
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1) |
|
|
|
padding_inputs = None |
|
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention): |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
if not self.config.use_memory_efficient_attention: |
|
padding_inputs = (indices, *input_shape) |
|
|
|
attention_scale = None |
|
if self.config.logn_attention_scale: |
|
logger.warning_once("TODO: logn_attention_scale") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_bias=attention_bias, |
|
rope_embeds=rope_embeds, |
|
padding_inputs=padding_inputs, |
|
attention_scale=attention_scale, |
|
subset_indices=subset_indices, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
if unpad_inputs and output_padded: |
|
sequence_output = pad_input( |
|
sequence_output.squeeze(), indices, batch_size, seq_length |
|
) |
|
|
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class NewLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.norm(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class NewForMaskedLM(NewPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"] |
|
|
|
def __init__(self, config: NewConfig): |
|
super().__init__(config) |
|
self.new = NewModel(config, add_pooling_layer=False) |
|
self.lm_head = NewLMPredictionHead(config) |
|
self.loss_fct = nn.CrossEntropyLoss() |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
unpad_inputs: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is None or not self.new.config.unpad_inputs: |
|
length = None |
|
subset_indices = None |
|
else: |
|
length = attention_mask.sum(-1).tolist() |
|
labels = labels[attention_mask.bool()].unsqueeze(0) |
|
subset_indices = labels > -100 |
|
|
|
outputs = self.new( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
length=length, |
|
subset_indices=subset_indices, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
unpad_inputs=unpad_inputs, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
if subset_indices is None: |
|
mask = attention_mask.bool() |
|
prediction_scores = prediction_scores[mask] |
|
labels = labels[mask] |
|
else: |
|
labels = labels[subset_indices] |
|
masked_lm_loss = self.loss_fct(prediction_scores, labels) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class NewForSequenceClassification(NewPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.new = NewModel(config, add_pooling_layer=True) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
unpad_inputs: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.new( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
unpad_inputs=unpad_inputs, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = nn.MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class NewForMultipleChoice(NewPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.new = NewModel(config, add_pooling_layer=True) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
unpad_inputs: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., |
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See |
|
`input_ids` above) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = self.new( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
unpad_inputs=unpad_inputs, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@dataclass |
|
class NewTokenClassifierOutput(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class NewForTokenClassification(NewPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.new = NewModel(config, add_pooling_layer=False) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
unpad_inputs: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.new( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
unpad_inputs=unpad_inputs, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return NewTokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
last_hidden_state=sequence_output, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class NewForQuestionAnswering(NewPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.new = NewModel(config, add_pooling_layer=False) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
start_positions: Optional[torch.Tensor] = None, |
|
end_positions: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
unpad_inputs: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.new( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
unpad_inputs=unpad_inputs, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |