File size: 2,043 Bytes
29af150 abb55ce 500acb5 abb55ce 29af150 500acb5 29af150 500acb5 5b0ec05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
datasets:
- Javiai/failures-3D-print
language:
- en
pipeline_tag: object-detection
---
# 3D Failures detection model based on Yolov5
This model was created using ```YOLOv5``` in ultralytics Hub with the [```'Javiai/failures-3D-print'```](https://huggingface.co/datasets/Javiai/failures-3D-print) dataset.
The idea is detect some failures in a 3D printing process. This model detect the part that is been printing, the extrusor, some errors and if
there is a spaghetti error type
## How to use
### Download the model
```python
from huggingface_hub import hf_hub_download
import torch
repo_id = "Javiai/3dprintfails-yolo5vs"
filenam = "model_torch.pt"
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
```
### Combine with the original model
```python
model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = False)
```
### Prepare an image
#### From the original dataset
```python
from datasets import load_dataset
dataset = load_dataset('Javiai/failures-3D-print')
image = dataset["train"][0]["image"]
```
#### From local
```python
from PIL import Image
image = Image.load("path/to/image")
```
### Inference and show the detection
```python
from PIL import ImageDraw
draw = ImageDraw.Draw(image)
detections = model(image)
categories = [
{'name': 'error', 'color': (0,0,255)},
{'name': 'extrusor', 'color': (0,255,0)},
{'name': 'part', 'color': (255,0,0)},
{'name': 'spaghetti', 'color': (0,0,255)}
]
for detection in detections.xyxy[0]:
x1, y1, x2, y2, p, category_id = detection
x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id)
draw.rectangle((x1, y1, x2, y2),
outline=categories[category_id]['color'],
width=1)
draw.text((x1, y1), categories[category_id]['name'],
categories[category_id]['color'])
image
```
## Example image
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c9c08a5fdc575773c7549b/3ZSkBvN0o8sSpQjGxdwJx.png) |