Upload 24 files
Browse files- F1_curve.png +0 -0
- PR_curve.png +0 -0
- P_curve.png +0 -0
- R_curve.png +0 -0
- args.yaml +106 -0
- confusion_matrix.png +0 -0
- confusion_matrix_normalized.png +0 -0
- labels.jpg +0 -0
- labels_correlogram.jpg +0 -0
- predictions.json +0 -0
- results.csv +51 -0
- results.png +0 -0
- train_batch0.jpg +0 -0
- train_batch1.jpg +0 -0
- train_batch17120.jpg +0 -0
- train_batch17121.jpg +0 -0
- train_batch17122.jpg +0 -0
- train_batch2.jpg +0 -0
- val_batch0_labels.jpg +0 -0
- val_batch0_pred.jpg +0 -0
- val_batch1_labels.jpg +0 -0
- val_batch1_pred.jpg +0 -0
- val_batch2_labels.jpg +0 -0
- val_batch2_pred.jpg +0 -0
F1_curve.png
ADDED
PR_curve.png
ADDED
P_curve.png
ADDED
R_curve.png
ADDED
args.yaml
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: detect
|
2 |
+
mode: train
|
3 |
+
model: D:\python_project\Yolo8\runs\detect\yolov8m_LTC15\weights\last.pt
|
4 |
+
data: custom_data.yaml
|
5 |
+
epochs: 50
|
6 |
+
time: null
|
7 |
+
patience: 100
|
8 |
+
batch: 32
|
9 |
+
imgsz: 640
|
10 |
+
save: true
|
11 |
+
save_period: 10
|
12 |
+
cache: false
|
13 |
+
device: 0
|
14 |
+
workers: 8
|
15 |
+
project: null
|
16 |
+
name: yolov8m_LTC15
|
17 |
+
exist_ok: false
|
18 |
+
pretrained: true
|
19 |
+
optimizer: auto
|
20 |
+
verbose: true
|
21 |
+
seed: 42
|
22 |
+
deterministic: true
|
23 |
+
single_cls: false
|
24 |
+
rect: false
|
25 |
+
cos_lr: false
|
26 |
+
close_mosaic: 10
|
27 |
+
resume: D:\python_project\Yolo8\runs\detect\yolov8m_LTC15\weights\last.pt
|
28 |
+
amp: true
|
29 |
+
fraction: 1
|
30 |
+
profile: false
|
31 |
+
freeze: null
|
32 |
+
multi_scale: false
|
33 |
+
overlap_mask: true
|
34 |
+
mask_ratio: 4
|
35 |
+
dropout: 0.0
|
36 |
+
val: true
|
37 |
+
split: val
|
38 |
+
save_json: true
|
39 |
+
save_hybrid: false
|
40 |
+
conf: null
|
41 |
+
iou: 0.7
|
42 |
+
max_det: 300
|
43 |
+
half: false
|
44 |
+
dnn: false
|
45 |
+
plots: true
|
46 |
+
source: null
|
47 |
+
vid_stride: 1
|
48 |
+
stream_buffer: false
|
49 |
+
visualize: false
|
50 |
+
augment: false
|
51 |
+
agnostic_nms: false
|
52 |
+
classes: null
|
53 |
+
retina_masks: false
|
54 |
+
embed: null
|
55 |
+
show: false
|
56 |
+
save_frames: false
|
57 |
+
save_txt: false
|
58 |
+
save_conf: true
|
59 |
+
save_crop: false
|
60 |
+
show_labels: true
|
61 |
+
show_conf: true
|
62 |
+
show_boxes: true
|
63 |
+
line_width: null
|
64 |
+
format: torchscript
|
65 |
+
keras: false
|
66 |
+
optimize: false
|
67 |
+
int8: false
|
68 |
+
dynamic: false
|
69 |
+
simplify: false
|
70 |
+
opset: null
|
71 |
+
workspace: 4
|
72 |
+
nms: false
|
73 |
+
lr0: 0.015
|
74 |
+
lrf: 0.005
|
75 |
+
momentum: 0.937
|
76 |
+
weight_decay: 0.0005
|
77 |
+
warmup_epochs: 3.0
|
78 |
+
warmup_momentum: 0.8
|
79 |
+
warmup_bias_lr: 0.0
|
80 |
+
box: 7.5
|
81 |
+
cls: 0.5
|
82 |
+
dfl: 1.5
|
83 |
+
pose: 12.0
|
84 |
+
kobj: 1.0
|
85 |
+
label_smoothing: 0.0
|
86 |
+
nbs: 64
|
87 |
+
hsv_h: 0.015
|
88 |
+
hsv_s: 0.7
|
89 |
+
hsv_v: 0.4
|
90 |
+
degrees: 20
|
91 |
+
translate: 0.1
|
92 |
+
scale: 0.5
|
93 |
+
shear: 0.0
|
94 |
+
perspective: 0.0
|
95 |
+
flipud: 0.0
|
96 |
+
fliplr: 0.5
|
97 |
+
bgr: 0.0
|
98 |
+
mosaic: 0.0
|
99 |
+
mixup: 0.0
|
100 |
+
copy_paste: 0.0
|
101 |
+
auto_augment: randaugment
|
102 |
+
erasing: 0.4
|
103 |
+
crop_fraction: 1.0
|
104 |
+
cfg: null
|
105 |
+
tracker: botsort.yaml
|
106 |
+
save_dir: runs\detect\yolov8m_LTC15
|
confusion_matrix.png
ADDED
confusion_matrix_normalized.png
ADDED
labels.jpg
ADDED
labels_correlogram.jpg
ADDED
predictions.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
results.csv
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
|
2 |
+
1, 1.5873, 2.4585, 1.0326, 0.70846, 0.55946, 0.63189, 0.30453, 1.946, 1.2285, 1.0048, 0.0033255, 0.0033255, 0.0033255
|
3 |
+
2, 1.4486, 0.96403, 1.0206, 0.73108, 0.63604, 0.66249, 0.29394, 1.9678, 0.99638, 1.044, 0.0065264, 0.0065264, 0.0065264
|
4 |
+
3, 1.5172, 1.0405, 1.0599, 0.69597, 0.27989, 0.4006, 0.2064, 2.0124, 2.334, 1.1281, 0.0095945, 0.0095945, 0.0095945
|
5 |
+
4, 1.5563, 1.0736, 1.0998, 0.7635, 0.57345, 0.59139, 0.27589, 2.0283, 1.1898, 1.0945, 0.009403, 0.009403, 0.009403
|
6 |
+
5, 1.4432, 0.9486, 1.0649, 0.73597, 0.62885, 0.67255, 0.37744, 1.6085, 0.98386, 1.0071, 0.009204, 0.009204, 0.009204
|
7 |
+
6, 1.382, 0.86505, 1.0388, 0.73958, 0.63374, 0.67208, 0.34715, 1.6872, 0.93489, 1.0259, 0.009005, 0.009005, 0.009005
|
8 |
+
7, 1.301, 0.79789, 1.0165, 0.86964, 0.71747, 0.7572, 0.43376, 1.4807, 0.76019, 0.96526, 0.008806, 0.008806, 0.008806
|
9 |
+
8, 1.2704, 0.7621, 1.003, 0.84873, 0.73673, 0.77927, 0.44083, 1.4835, 0.75299, 0.95721, 0.008607, 0.008607, 0.008607
|
10 |
+
9, 1.2268, 0.72808, 0.99157, 0.877, 0.75572, 0.80644, 0.46706, 1.3906, 0.68153, 0.92355, 0.008408, 0.008408, 0.008408
|
11 |
+
10, 1.2112, 0.70085, 0.98574, 0.85687, 0.71251, 0.76846, 0.45865, 1.372, 0.72622, 0.938, 0.008209, 0.008209, 0.008209
|
12 |
+
11, 1.1941, 0.69642, 0.97997, 0.82962, 0.66776, 0.72805, 0.44342, 1.3919, 0.80002, 0.96298, 0.00801, 0.00801, 0.00801
|
13 |
+
12, 1.1643, 0.66954, 0.96922, 0.87926, 0.77873, 0.81369, 0.50454, 1.2633, 0.65566, 0.89974, 0.007811, 0.007811, 0.007811
|
14 |
+
13, 1.1364, 0.65312, 0.96274, 0.9082, 0.78826, 0.84282, 0.51765, 1.2593, 0.61577, 0.90122, 0.007612, 0.007612, 0.007612
|
15 |
+
14, 1.1171, 0.62955, 0.95927, 0.89537, 0.74796, 0.81307, 0.51625, 1.1916, 0.62167, 0.90146, 0.007413, 0.007413, 0.007413
|
16 |
+
15, 1.1068, 0.62592, 0.95012, 0.90115, 0.77275, 0.83547, 0.5316, 1.1549, 0.60403, 0.89612, 0.007214, 0.007214, 0.007214
|
17 |
+
16, 1.0937, 0.61269, 0.94502, 0.91775, 0.80721, 0.85655, 0.53896, 1.2196, 0.58336, 0.88936, 0.007015, 0.007015, 0.007015
|
18 |
+
17, 1.0584, 0.59292, 0.93878, 0.90386, 0.78522, 0.85313, 0.54729, 1.1357, 0.56828, 0.88486, 0.006816, 0.006816, 0.006816
|
19 |
+
18, 1.0583, 0.5849, 0.93532, 0.89637, 0.78581, 0.85128, 0.55096, 1.1497, 0.58236, 0.88047, 0.006617, 0.006617, 0.006617
|
20 |
+
19, 1.0501, 0.58056, 0.94012, 0.89474, 0.81405, 0.86199, 0.556, 1.1354, 0.55043, 0.87615, 0.006418, 0.006418, 0.006418
|
21 |
+
20, 1.0378, 0.57237, 0.93315, 0.89671, 0.805, 0.85702, 0.55753, 1.1181, 0.54184, 0.8723, 0.006219, 0.006219, 0.006219
|
22 |
+
21, 1.0241, 0.55861, 0.92608, 0.92138, 0.80588, 0.85769, 0.57619, 1.0772, 0.52479, 0.85957, 0.00602, 0.00602, 0.00602
|
23 |
+
22, 1.0231, 0.5603, 0.93061, 0.92723, 0.80281, 0.86867, 0.59345, 1.042, 0.5126, 0.86613, 0.005821, 0.005821, 0.005821
|
24 |
+
23, 1.0002, 0.54112, 0.91974, 0.93363, 0.81724, 0.88043, 0.59791, 1.0433, 0.50852, 0.86186, 0.005622, 0.005622, 0.005622
|
25 |
+
24, 0.9941, 0.53265, 0.92189, 0.92443, 0.81808, 0.87686, 0.59901, 1.0122, 0.50224, 0.86147, 0.005423, 0.005423, 0.005423
|
26 |
+
25, 0.98121, 0.52903, 0.91754, 0.92108, 0.8302, 0.88232, 0.60394, 0.99371, 0.48711, 0.85757, 0.005224, 0.005224, 0.005224
|
27 |
+
26, 0.97954, 0.52205, 0.91232, 0.93222, 0.81833, 0.87986, 0.59219, 1.0479, 0.49569, 0.86292, 0.005025, 0.005025, 0.005025
|
28 |
+
27, 0.95345, 0.51328, 0.9091, 0.94663, 0.80672, 0.8752, 0.59978, 1.0412, 0.49653, 0.86651, 0.004826, 0.004826, 0.004826
|
29 |
+
28, 0.94624, 0.50555, 0.90668, 0.93866, 0.83121, 0.89461, 0.608, 1.0637, 0.49542, 0.86243, 0.004627, 0.004627, 0.004627
|
30 |
+
29, 0.9355, 0.49795, 0.90575, 0.93222, 0.83915, 0.89943, 0.61936, 0.98217, 0.46745, 0.85352, 0.004428, 0.004428, 0.004428
|
31 |
+
30, 0.93524, 0.49014, 0.90812, 0.9299, 0.83146, 0.89492, 0.62296, 0.95176, 0.45768, 0.84581, 0.004229, 0.004229, 0.004229
|
32 |
+
31, 0.93426, 0.49275, 0.90629, 0.94177, 0.8445, 0.90423, 0.61372, 1.0071, 0.46689, 0.85168, 0.00403, 0.00403, 0.00403
|
33 |
+
32, 0.91871, 0.47594, 0.89948, 0.93069, 0.83859, 0.89356, 0.61859, 0.96647, 0.46363, 0.84999, 0.003831, 0.003831, 0.003831
|
34 |
+
33, 0.90329, 0.47388, 0.89833, 0.94612, 0.83795, 0.90546, 0.62809, 0.97967, 0.45938, 0.84892, 0.003632, 0.003632, 0.003632
|
35 |
+
34, 0.88817, 0.4642, 0.89444, 0.95223, 0.84051, 0.90496, 0.63047, 0.94973, 0.45057, 0.84695, 0.003433, 0.003433, 0.003433
|
36 |
+
35, 0.88321, 0.46098, 0.88845, 0.94352, 0.83219, 0.89581, 0.61771, 1.0045, 0.46104, 0.84951, 0.003234, 0.003234, 0.003234
|
37 |
+
36, 0.88141, 0.45661, 0.88795, 0.94672, 0.8406, 0.90197, 0.63205, 0.95432, 0.4485, 0.84873, 0.003035, 0.003035, 0.003035
|
38 |
+
37, 0.8592, 0.44739, 0.8849, 0.94883, 0.84289, 0.90584, 0.63648, 0.92547, 0.4393, 0.84066, 0.002836, 0.002836, 0.002836
|
39 |
+
38, 0.85332, 0.43541, 0.87937, 0.94887, 0.84375, 0.90548, 0.64024, 0.92348, 0.4323, 0.8438, 0.002637, 0.002637, 0.002637
|
40 |
+
39, 0.84875, 0.43831, 0.88604, 0.95182, 0.84117, 0.9051, 0.64051, 0.92826, 0.43625, 0.84749, 0.002438, 0.002438, 0.002438
|
41 |
+
40, 0.84, 0.43253, 0.88122, 0.94952, 0.84495, 0.90603, 0.63663, 0.93639, 0.43381, 0.84356, 0.002239, 0.002239, 0.002239
|
42 |
+
41, 0.79814, 0.37959, 0.85645, 0.95466, 0.84619, 0.91339, 0.65306, 0.90524, 0.42344, 0.84097, 0.00204, 0.00204, 0.00204
|
43 |
+
42, 0.78485, 0.3714, 0.85635, 0.95135, 0.84751, 0.91136, 0.65072, 0.91793, 0.43035, 0.84226, 0.001841, 0.001841, 0.001841
|
44 |
+
43, 0.77144, 0.36579, 0.85391, 0.94764, 0.84521, 0.91104, 0.65279, 0.91176, 0.42632, 0.84586, 0.001642, 0.001642, 0.001642
|
45 |
+
44, 0.75875, 0.36084, 0.85189, 0.9526, 0.84546, 0.91569, 0.6575, 0.89942, 0.42348, 0.83979, 0.001443, 0.001443, 0.001443
|
46 |
+
45, 0.74944, 0.3561, 0.85001, 0.95601, 0.84497, 0.91817, 0.65474, 0.91055, 0.42331, 0.84095, 0.001244, 0.001244, 0.001244
|
47 |
+
46, 0.73747, 0.34758, 0.8478, 0.9564, 0.84309, 0.91901, 0.65179, 0.92297, 0.43147, 0.84384, 0.001045, 0.001045, 0.001045
|
48 |
+
47, 0.7246, 0.33918, 0.84076, 0.94592, 0.84217, 0.9128, 0.65616, 0.91046, 0.42518, 0.84255, 0.000846, 0.000846, 0.000846
|
49 |
+
48, 0.71687, 0.33174, 0.84134, 0.94621, 0.84357, 0.91487, 0.65932, 0.90268, 0.41803, 0.84084, 0.000647, 0.000647, 0.000647
|
50 |
+
49, 0.71337, 0.32973, 0.83963, 0.94936, 0.84424, 0.9181, 0.66262, 0.89847, 0.418, 0.84116, 0.000448, 0.000448, 0.000448
|
51 |
+
50, 0.6999, 0.32162, 0.83415, 0.95408, 0.84403, 0.92121, 0.663, 0.89543, 0.41845, 0.84129, 0.000249, 0.000249, 0.000249
|
results.png
ADDED
train_batch0.jpg
ADDED
train_batch1.jpg
ADDED
train_batch17120.jpg
ADDED
train_batch17121.jpg
ADDED
train_batch17122.jpg
ADDED
train_batch2.jpg
ADDED
val_batch0_labels.jpg
ADDED
val_batch0_pred.jpg
ADDED
val_batch1_labels.jpg
ADDED
val_batch1_pred.jpg
ADDED
val_batch2_labels.jpg
ADDED
val_batch2_pred.jpg
ADDED