Jeney's picture
Output logits
db02aa7
raw
history blame
1.02 kB
import torch
import io
from typing import Any, Dict
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.processor = ViltProcessor.from_pretrained(path)
self.model = ViltForQuestionAnswering.from_pretrained(path)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
# process input
inputs = data.pop("inputs", data)
image = inputs["image"]
image = Image.open(io.BytesIO(eval(image)))
text = inputs["text"]
# preprocess
encoding = self.processor(image, text, return_tensors="pt")
outputs = self.model(**encoding)
# postprocess the prediction
logits = outputs.logits
idx = logits.argmax(-1).item()
return [{"best_answer": self.model.config.id2label[idx], "logits":outputs.logits}]