--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8500813669650122 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mnli_matched split: validation metrics: - name: Accuracy type: accuracy value: 0.8467651553744269 verified: true - name: Precision Macro type: precision value: 0.8460148987014974 verified: true - name: Precision Micro type: precision value: 0.8467651553744269 verified: true - name: Precision Weighted type: precision value: 0.8475656756385261 verified: true - name: Recall Macro type: recall value: 0.8463172075485045 verified: true - name: Recall Micro type: recall value: 0.8467651553744269 verified: true - name: Recall Weighted type: recall value: 0.8467651553744269 verified: true - name: F1 Macro type: f1 value: 0.8459654597797398 verified: true - name: F1 Micro type: f1 value: 0.8467651553744269 verified: true - name: F1 Weighted type: f1 value: 0.8469586362613581 verified: true - name: loss type: loss value: 0.42515239119529724 verified: true --- # bert-base-uncased-mnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4056 - Accuracy: 0.8501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4526 | 1.0 | 12272 | 0.4244 | 0.8388 | | 0.3344 | 2.0 | 24544 | 0.4252 | 0.8469 | | 0.2307 | 3.0 | 36816 | 0.4974 | 0.8445 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1