File size: 4,284 Bytes
c90e72d
18a25db
 
c90e72d
 
 
 
 
 
 
 
ab35e43
c90e72d
 
 
 
 
f5f4b59
c90e72d
18a25db
c90e72d
 
 
f5f4b59
c90e72d
f5f4b59
 
c90e72d
f5f4b59
2327c12
 
 
 
 
 
 
 
 
f5f4b59
2327c12
f5f4b59
2327c12
f5f4b59
 
2327c12
f5f4b59
2327c12
f5f4b59
 
2327c12
f5f4b59
2327c12
f5f4b59
 
2327c12
f5f4b59
2327c12
f5f4b59
 
2327c12
f5f4b59
2327c12
f5f4b59
 
2327c12
f5f4b59
2327c12
f5f4b59
c90e72d
 
 
 
 
 
 
18a25db
c90e72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased-qqp
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE QQP
      type: glue
      args: qqp
    metrics:
    - type: accuracy
      value: 0.9099925797674994
      name: Accuracy
    - type: f1
      value: 0.8788252139455897
      name: F1
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: qqp
      split: validation
    metrics:
    - type: accuracy
      value: 0.9099925797674994
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2RlZGIxNjAyYjRkMzg4N2FhMDEwYzk3NzNlNDEyNjc2ZTI4M2U4Mjk0ODU0NTk4NmNhNjUwZjAxNDBmNjdkMiIsInZlcnNpb24iOjF9.ftCigJiFH-iVFMBG5dSVIxdV4sgu3QVcQ0HGDjnxdI6nlWXRVAXEPkEFBeo2T-NfKNOV62HRYC7JgquMS00VDg
    - type: precision
      value: 0.8712531361415555
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGM5MDdjZGY5YzE4OTg3YmJkYTgwYWMxOWY4NjhkNmE3N2YwMzc0OTc1ODQ0NjZhYjYzZDA3NTZkODczODMyYyIsInZlcnNpb24iOjF9.waQg4ueAVRbKStoFGrZrLBgWgsfmK-Ro-eHFYNLObmSbbi35hC46tjAGgNd1blHc6aNsLmpkfK-qtMCepPEEAQ
    - type: recall
      value: 0.8865300638226402
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzYyODkxZmU4ZDNjNmQ0ZGZiMTExZTA0Mjk2ZjZkMDRiNGFhOWFhNTBhNzNkMjE5YzE2MDRkN2I4YjVlMTYxZSIsInZlcnNpb24iOjF9.wXo-nBoBrXeunx-4yCbkNUfyqc8HhrJ0NeQA1d_cNBXlsNVeGEznVFduSu8aVwrrLqbRpDJWYshPEL9eAxQPAQ
    - type: auc
      value: 0.9690747048570257
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmZjZTc3NmU3MTQ4OWVmMWMzNzIxYjU5YjRjOGIwMzQwNGIxZmJhODJjMDhkZjA1ZGJmYjAzNDM4ZGQxZmQxNiIsInZlcnNpb24iOjF9.KiQN8JfNNTB3lBV-58LoLhQnUZTixTzId_URIpCFENICV2ykYzwfR7WW9WrOc8dbRv79121xB46fjNLGHziBAQ
    - type: f1
      value: 0.8788252139455897
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmYyNjYxYmJmNjg3ODA1MjZmYWMxODllZGMzODI1NGFjNGU5ZTIxNGI3MWI4NWZiZDUwMDExMTE0ODEyODgyMSIsInZlcnNpb24iOjF9.a-gyRh1_YMEWnCTypkwp3w39iy5_1PmFntHszwtTISqDJtDKQsl3FYFJGzujSzllHrXl9ILFTcjLSkamvZSECw
    - type: loss
      value: 0.28284332156181335
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzg5ZGJiM2E4MzI1MmZkNjAyOWFlYjU2OGI0NDJiNTI3YThiNzZkMDIwMTNhZDg1NzMwNjZmNTE5NDgzYTBiMSIsInZlcnNpb24iOjF9.CPKvNWzGTwAZf0PgU-rhQYS_sFnRmrBVor4fRzDuNQjz-QtjdCPxyfWpGVsuOzuAr_u71fdFS6tGyuVpasl1Bw
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-qqp

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2829
- Accuracy: 0.9100
- F1: 0.8788
- Combined Score: 0.8944

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.2511        | 1.0   | 11371 | 0.2469          | 0.8969   | 0.8641 | 0.8805         |
| 0.1763        | 2.0   | 22742 | 0.2379          | 0.9071   | 0.8769 | 0.8920         |
| 0.1221        | 3.0   | 34113 | 0.2829          | 0.9100   | 0.8788 | 0.8944         |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1