File size: 34,180 Bytes
30cedfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for text classification."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.

import logging
import os
import random
import sys
import warnings
from dataclasses import dataclass, field
from typing import List, Optional

import datasets
import evaluate
import numpy as np
from datasets import Value, load_dataset

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.38.0.dev0")

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")


logger = logging.getLogger(__name__)


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    do_regression: bool = field(
        default=None,
        metadata={
            "help": "Whether to do regression instead of classification. If None, will be inferred from the dataset."
        },
    )
    text_column_names: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "The name of the text column in the input dataset or a CSV/JSON file. "
                'If not specified, will use the "sentence" column for single/multi-label classification task.'
            )
        },
    )
    text_column_delimiter: Optional[str] = field(
        default=" ", metadata={"help": "THe delimiter to use to join text columns into a single sentence."}
    )
    train_split_name: Optional[str] = field(
        default=None,
        metadata={
            "help": 'The name of the train split in the input dataset. If not specified, will use the "train" split when do_train is enabled'
        },
    )
    validation_split_name: Optional[str] = field(
        default=None,
        metadata={
            "help": 'The name of the validation split in the input dataset. If not specified, will use the "validation" split when do_eval is enabled'
        },
    )
    test_split_name: Optional[str] = field(
        default=None,
        metadata={
            "help": 'The name of the test split in the input dataset. If not specified, will use the "test" split when do_predict is enabled'
        },
    )
    remove_splits: Optional[str] = field(
        default=None,
        metadata={"help": "The splits to remove from the dataset. Multiple splits should be separated by commas."},
    )
    remove_columns: Optional[str] = field(
        default=None,
        metadata={"help": "The columns to remove from the dataset. Multiple columns should be separated by commas."},
    )
    label_column_name: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "The name of the label column in the input dataset or a CSV/JSON file. "
                'If not specified, will use the "label" column for single/multi-label classification task'
            )
        },
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
        },
    )
    shuffle_train_dataset: bool = field(
        default=False, metadata={"help": "Whether to shuffle the train dataset or not."}
    )
    shuffle_seed: int = field(
        default=42, metadata={"help": "Random seed that will be used to shuffle the train dataset."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
        },
    )
    metric_name: Optional[str] = field(default=None, metadata={"help": "The metric to use for evaluation."})
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})

    def __post_init__(self):
        if self.dataset_name is None:
            if self.train_file is None or self.validation_file is None:
                raise ValueError(" training/validation file or a dataset name.")

            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )


def get_label_list(raw_dataset, split="train") -> List[str]:
    """Get the list of labels from a multi-label dataset"""

    if isinstance(raw_dataset[split]["label"][0], list):
        label_list = [label for sample in raw_dataset[split]["label"] for label in sample]
        label_list = list(set(label_list))
    else:
        label_list = raw_dataset[split].unique("label")
    # we will treat the label list as a list of string instead of int, consistent with model.config.label2id
    label_list = [str(label) for label in label_list]
    return label_list


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if model_args.use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    # send_example_telemetry("run_classification", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files, or specify a dataset name
    # to load from huggingface/datasets. In ether case, you can specify a the key of the column(s) containing the text and
    # the key of the column containing the label. If multiple columns are specified for the text, they will be joined together
    # for the actual text value.
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            token=model_args.token,
        )
        # Try print some info about the dataset
        logger.info(f"Dataset loaded: {raw_datasets}")
        logger.info(raw_datasets)
    else:
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a dataset name or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
            raw_datasets = load_dataset(
                "csv",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                token=model_args.token,
            )
        else:
            # Loading a dataset from local json files
            raw_datasets = load_dataset(
                "json",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                token=model_args.token,
            )

    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.

    if data_args.remove_splits is not None:
        for split in data_args.remove_splits.split(","):
            logger.info(f"removing split {split}")
            raw_datasets.pop(split)

    if data_args.train_split_name is not None:
        logger.info(f"using {data_args.train_split_name} as train set")
        raw_datasets["train"] = raw_datasets[data_args.train_split_name]
        raw_datasets.pop(data_args.train_split_name)

    if data_args.validation_split_name is not None:
        logger.info(f"using {data_args.validation_split_name} as validation set")
        raw_datasets["validation"] = raw_datasets[data_args.validation_split_name]
        raw_datasets.pop(data_args.validation_split_name)

    if data_args.test_split_name is not None:
        logger.info(f"using {data_args.test_split_name} as test set")
        raw_datasets["test"] = raw_datasets[data_args.test_split_name]
        raw_datasets.pop(data_args.test_split_name)

    if data_args.remove_columns is not None:
        for split in raw_datasets.keys():
            for column in data_args.remove_columns.split(","):
                logger.info(f"removing column {column} from split {split}")
                raw_datasets[split].remove_columns(column)

    if data_args.label_column_name is not None and data_args.label_column_name != "label":
        for key in raw_datasets.keys():
            raw_datasets[key] = raw_datasets[key].rename_column(data_args.label_column_name, "label")

    # Trying to have good defaults here, don't hesitate to tweak to your needs.

    is_regression = (
        raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
        if data_args.do_regression is None
        else data_args.do_regression
    )

    is_multi_label = False
    if is_regression:
        label_list = None
        num_labels = 1
        # regession requires float as label type, let's cast it if needed
        for split in raw_datasets.keys():
            if raw_datasets[split].features["label"].dtype not in ["float32", "float64"]:
                logger.warning(
                    f"Label type for {split} set to float32, was {raw_datasets[split].features['label'].dtype}"
                )
                features = raw_datasets[split].features
                features.update({"label": Value("float32")})
                try:
                    raw_datasets[split] = raw_datasets[split].cast(features)
                except TypeError as error:
                    logger.error(
                        f"Unable to cast {split} set to float32, please check the labels are correct, or maybe try with --do_regression=False"
                    )
                    raise error

    else:  # classification
        if raw_datasets["train"].features["label"].dtype == "list":  # multi-label classification
            is_multi_label = True
            logger.info("Label type is list, doing multi-label classification")
        # Trying to find the number of labels in a multi-label classification task
        # We have to deal with common cases that labels appear in the training set but not in the validation/test set.
        # So we build the label list from the union of labels in train/val/test.
        label_list = get_label_list(raw_datasets, split="train")
        for split in ["validation", "test"]:
            if split in raw_datasets:
                val_or_test_labels = get_label_list(raw_datasets, split=split)
                diff = set(val_or_test_labels).difference(set(label_list))
                if len(diff) > 0:
                    # add the labels that appear in val/test but not in train, throw a warning
                    logger.warning(
                        f"Labels {diff} in {split} set but not in training set, adding them to the label list"
                    )
                    label_list += list(diff)
        # if label is -1, we throw a warning and remove it from the label list
        for label in label_list:
            if label == -1:
                logger.warning("Label -1 found in label list, removing it.")
                label_list.remove(label)

        label_list.sort()
        num_labels = len(label_list)
        if num_labels <= 1:
            raise ValueError("You need more than one label to do classification.")

    # Load pretrained model and tokenizer
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task="text-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    if is_regression:
        config.problem_type = "regression"
        logger.info("setting problem type to regression")
    elif is_multi_label:
        config.problem_type = "multi_label_classification"
        logger.info("setting problem type to multi label classification")
    else:
        config.problem_type = "single_label_classification"
        logger.info("setting problem type to single label classification")

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    # for training ,we will update the config with label infos,
    # if do_train is not set, we will use the label infos in the config
    if training_args.do_train and not is_regression:  # classification, training
        label_to_id = {v: i for i, v in enumerate(label_list)}
        # update config with label infos
        if model.config.label2id != label_to_id:
            logger.warning(
                "The label2id key in the model config.json is not equal to the label2id key of this "
                "run. You can ignore this if you are doing finetuning."
            )
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in label_to_id.items()}
    elif not is_regression:  # classification, but not training
        logger.info("using label infos in the model config")
        logger.info("label2id: {}".format(model.config.label2id))
        label_to_id = model.config.label2id
    else:  # regression
        label_to_id = None

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def multi_labels_to_ids(labels: List[str]) -> List[float]:
        ids = [0.0] * len(label_to_id)  # BCELoss requires float as target type
        for label in labels:
            ids[label_to_id[label]] = 1.0
        return ids

    def preprocess_function(examples):
        if data_args.text_column_names is not None:
            text_column_names = data_args.text_column_names.split(",")
            # join together text columns into "sentence" column
            examples["sentence"] = examples[text_column_names[0]]
            for column in text_column_names[1:]:
                for i in range(len(examples[column])):
                    examples["sentence"][i] += data_args.text_column_delimiter + examples[column][i]
        # Tokenize the texts
        result = tokenizer(examples["sentence"], padding=padding, max_length=max_seq_length, truncation=True)
        if label_to_id is not None and "label" in examples:
            if is_multi_label:
                result["label"] = [multi_labels_to_ids(l) for l in examples["label"]]
            else:
                result["label"] = [(label_to_id[str(l)] if l != -1 else -1) for l in examples["label"]]
        return result

    # Running the preprocessing pipeline on all the datasets
    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset.")
        train_dataset = raw_datasets["train"]
        if data_args.shuffle_train_dataset:
            logger.info("Shuffling the training dataset")
            train_dataset = train_dataset.shuffle(seed=data_args.shuffle_seed)
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
            if "test" not in raw_datasets and "test_matched" not in raw_datasets:
                raise ValueError("--do_eval requires a validation or test dataset if validation is not defined.")
            else:
                logger.warning("Validation dataset not found. Falling back to test dataset for validation.")
                eval_dataset = raw_datasets["test"]
        else:
            eval_dataset = raw_datasets["validation"]

        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    if training_args.do_predict or data_args.test_file is not None:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        # remove label column if it exists
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))

    # Log a few random samples from the training set:
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    if data_args.metric_name is not None:
        metric = (
            evaluate.load(data_args.metric_name, config_name="multilabel", cache_dir=model_args.cache_dir)
            if is_multi_label
            else evaluate.load(data_args.metric_name, cache_dir=model_args.cache_dir)
        )
        logger.info(f"Using metric {data_args.metric_name} for evaluation.")
    else:
        if is_regression:
            metric = evaluate.load("mse", cache_dir=model_args.cache_dir)
            logger.info("Using mean squared error (mse) as regression score, you can use --metric_name to overwrite.")
        else:
            if is_multi_label:
                metric = evaluate.load("f1", config_name="multilabel", cache_dir=model_args.cache_dir)
                logger.info(
                    "Using multilabel F1 for multi-label classification task, you can use --metric_name to overwrite."
                )
            else:
                metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
                logger.info("Using accuracy as classification score, you can use --metric_name to overwrite.")

    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        if is_regression:
            preds = np.squeeze(preds)
            result = metric.compute(predictions=preds, references=p.label_ids)
        elif is_multi_label:
            preds = np.array([np.where(p > 0, 1, 0) for p in preds])  # convert logits to multi-hot encoding
            # Micro F1 is commonly used in multi-label classification
            result = metric.compute(predictions=preds, references=p.label_ids, average="micro")
        else:
            preds = np.argmax(preds, axis=1)
            result = metric.compute(predictions=preds, references=p.label_ids)
        if len(result) > 1:
            result["combined_score"] = np.mean(list(result.values())).item()
        return result

    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
        trainer.save_model()  # Saves the tokenizer too for easy upload
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(eval_dataset=eval_dataset)
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")
        # Removing the `label` columns if exists because it might contains -1 and Trainer won't like that.
        if "label" in predict_dataset.features:
            predict_dataset = predict_dataset.remove_columns("label")
        predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
        if is_regression:
            predictions = np.squeeze(predictions)
        elif is_multi_label:
            # Convert logits to multi-hot encoding. We compare the logits to 0 instead of 0.5, because the sigmoid is not applied.
            # You can also pass `preprocess_logits_for_metrics=lambda logits, labels: nn.functional.sigmoid(logits)` to the Trainer
            # and set p > 0.5 below (less efficient in this case)
            predictions = np.array([np.where(p > 0, 1, 0) for p in predictions])
        else:
            predictions = np.argmax(predictions, axis=1)
        output_predict_file = os.path.join(training_args.output_dir, "predict_results.txt")
        if trainer.is_world_process_zero():
            with open(output_predict_file, "w") as writer:
                logger.info("***** Predict results *****")
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    if is_regression:
                        writer.write(f"{index}\t{item:3.3f}\n")
                    elif is_multi_label:
                        # recover from multi-hot encoding
                        item = [label_list[i] for i in range(len(item)) if item[i] == 1]
                        writer.write(f"{index}\t{item}\n")
                    else:
                        item = label_list[item]
                        writer.write(f"{index}\t{item}\n")
        logger.info("Predict results saved at {}".format(output_predict_file))
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()