--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- # roberta-base-wnli This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6849 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6849 | 0.5634 | | No log | 2.0 | 80 | 0.6912 | 0.5634 | | No log | 3.0 | 120 | 0.6918 | 0.5634 | | No log | 4.0 | 160 | 0.6964 | 0.4366 | | No log | 5.0 | 200 | 0.6928 | 0.5634 | | No log | 6.0 | 240 | 0.7005 | 0.4366 | | No log | 7.0 | 280 | 0.6964 | 0.3099 | | No log | 8.0 | 320 | 0.6986 | 0.3521 | | No log | 9.0 | 360 | 0.6969 | 0.5493 | | No log | 10.0 | 400 | 0.6976 | 0.5634 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1