File size: 3,965 Bytes
917652e
98aa45a
 
917652e
 
 
 
 
 
 
 
 
 
 
 
98aa45a
917652e
98aa45a
 
 
917652e
98aa45a
 
 
 
 
 
 
917652e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98aa45a
917652e
 
 
 
98aa45a
917652e
 
 
 
 
 
 
 
 
 
98aa45a
 
 
 
 
 
 
 
 
917652e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5274
- Rewards/chosen: -0.0838
- Rewards/rejected: -1.1574
- Rewards/accuracies: 0.7579
- Rewards/margins: 1.0735
- Logps/rejected: -273.2137
- Logps/chosen: -289.3620
- Logits/rejected: -2.7815
- Logits/chosen: -2.7866
- Use Label: 0.0
- Pred Label: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Use Label | Pred Label |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:---------:|:----------:|
| 0.6368        | 0.1   | 100  | 0.6040          | 0.1800         | -0.4000          | 0.6746             | 0.5800          | -265.6400      | -286.7236    | -2.8083         | -2.8249       | 0.0       | 0.0        |
| 0.558         | 0.21  | 200  | 0.5652          | 0.1323         | -0.7862          | 0.7421             | 0.9186          | -269.5020      | -287.2001    | -2.7981         | -2.8081       | 0.0       | 0.0        |
| 0.553         | 0.31  | 300  | 0.5432          | -0.0674        | -1.0423          | 0.7341             | 0.9749          | -272.0630      | -289.1978    | -2.7421         | -2.7517       | 0.0       | 0.0        |
| 0.5019        | 0.42  | 400  | 0.5371          | 0.1229         | -0.9260          | 0.7540             | 1.0490          | -270.9003      | -287.2944    | -2.7871         | -2.7961       | 0.0       | 0.0        |
| 0.5303        | 0.52  | 500  | 0.5362          | 0.0755         | -0.9534          | 0.7381             | 1.0290          | -271.1743      | -287.7682    | -2.7415         | -2.7495       | 0.0       | 0.0        |
| 0.5791        | 0.63  | 600  | 0.5281          | 0.0277         | -1.0275          | 0.7460             | 1.0552          | -271.9149      | -288.2469    | -2.7518         | -2.7595       | 0.0       | 0.0        |
| 0.5238        | 0.73  | 700  | 0.5295          | 0.0341         | -1.0667          | 0.7540             | 1.1008          | -272.3072      | -288.1828    | -2.7262         | -2.7338       | 0.0       | 0.0        |
| 0.515         | 0.84  | 800  | 0.5258          | -0.0054        | -1.1189          | 0.7540             | 1.1135          | -272.8286      | -288.5772    | -2.7479         | -2.7544       | 0.0       | 0.0        |
| 0.5166        | 0.94  | 900  | 0.5273          | -0.0792        | -1.1432          | 0.7619             | 1.0640          | -273.0717      | -289.3157    | -2.7775         | -2.7829       | 0.0       | 0.0        |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1