File size: 1,648 Bytes
016b0bd
988b6c7
 
016b0bd
 
 
 
 
 
 
 
 
 
 
 
988b6c7
016b0bd
988b6c7
32bae28
 
 
988b6c7
 
 
 
 
 
 
 
 
016b0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd5dfb
e6ef84d
016b0bd
 
 
9bd5dfb
e6ef84d
 
9bd5dfb
016b0bd
 
 
988b6c7
016b0bd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: HuggingFaceH4/zephyr-7b-beta
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-lora

This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.6931
- eval_runtime: 817.0722
- eval_samples_per_second: 2.448
- eval_steps_per_second: 0.153
- eval_rewards/chosen: 0.0
- eval_rewards/rejected: 0.0
- eval_rewards/accuracies: 0.0
- eval_rewards/margins: 0.0
- eval_logps/rejected: -311.3714
- eval_logps/chosen: -319.0738
- eval_logits/rejected: -2.3541
- eval_logits/chosen: -2.4051
- step: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 0

### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1