--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-large-e2-noweight results: [] --- # roberta-large-e2-noweight This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5448 - Accuracy: 0.8160 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.5941 | 1.0 | 1267 | 0.4783 | 0.8160 | 0.0 | 0.0 | 0.0 | | 0.4886 | 2.0 | 2534 | 0.5448 | 0.8160 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3