--- library_name: transformers base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer model-index: - name: Bert_TPF_v10 results: [] --- # Bert_TPF_v10 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Accuracy@en: 0.8315 - F1@en: 0.8323 - Precision@en: 0.8373 - Recall@en: 0.8368 - Loss@en: 0.6173 - Loss: 0.6173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Accuracy@en | F1@en | Precision@en | Recall@en | Loss@en | Validation Loss | |:-------------:|:-----:|:-----:|:-----------:|:------:|:------------:|:---------:|:-------:|:---------------:| | 3.2405 | 1.0 | 552 | 0.2037 | 0.1306 | 0.1465 | 0.2065 | 2.5934 | 2.5934 | | 2.3891 | 2.0 | 1104 | 0.2992 | 0.2349 | 0.2586 | 0.3058 | 2.0876 | 2.0876 | | 2.0117 | 3.0 | 1656 | 0.3765 | 0.3448 | 0.3683 | 0.3839 | 1.8638 | 1.8638 | | 1.7804 | 4.0 | 2208 | 0.4619 | 0.4287 | 0.4433 | 0.4705 | 1.6337 | 1.6337 | | 1.4913 | 5.0 | 2760 | 0.5228 | 0.4905 | 0.5357 | 0.5306 | 1.3950 | 1.3950 | | 1.2177 | 6.0 | 3312 | 0.5696 | 0.5529 | 0.6054 | 0.5773 | 1.2562 | 1.2562 | | 1.0274 | 7.0 | 3864 | 0.6278 | 0.6086 | 0.6598 | 0.6360 | 1.0466 | 1.0466 | | 0.8372 | 8.0 | 4416 | 0.7050 | 0.7007 | 0.7254 | 0.7104 | 0.8734 | 0.8734 | | 0.67 | 9.0 | 4968 | 0.7407 | 0.7373 | 0.7510 | 0.7463 | 0.8112 | 0.8112 | | 0.5259 | 10.0 | 5520 | 0.8 | 0.7999 | 0.8069 | 0.8050 | 0.6594 | 0.6594 | | 0.4333 | 11.0 | 6072 | 0.8095 | 0.8056 | 0.8219 | 0.8159 | 0.6305 | 0.6305 | | 0.3503 | 12.0 | 6624 | 0.8019 | 0.7985 | 0.8132 | 0.8074 | 0.6698 | 0.6698 | | 0.2961 | 13.0 | 7176 | 0.8315 | 0.8323 | 0.8373 | 0.8368 | 0.6173 | 0.6173 | | 0.2441 | 14.0 | 7728 | 0.8450 | 0.8459 | 0.8482 | 0.8493 | 0.6287 | 0.6287 | | 0.2078 | 15.0 | 8280 | 0.8471 | 0.8477 | 0.8508 | 0.8511 | 0.6280 | 0.6280 | | 0.1857 | 16.0 | 8832 | 0.8463 | 0.8470 | 0.8513 | 0.8510 | 0.6293 | 0.6293 | | 0.164 | 17.0 | 9384 | 0.8471 | 0.8480 | 0.8510 | 0.8512 | 0.6371 | 0.6371 | | 0.1467 | 18.0 | 9936 | 0.8489 | 0.8497 | 0.8536 | 0.8532 | 0.6410 | 0.6410 | | 0.1409 | 19.0 | 10488 | 0.8489 | 0.8496 | 0.8535 | 0.8528 | 0.6396 | 0.6396 | | 0.1378 | 20.0 | 11040 | 0.8497 | 0.8505 | 0.8543 | 0.8537 | 0.6395 | 0.6395 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1