--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback-armorm model-index: - name: llama-3-8b-instruct-gapo-v2-bert-f1-beta10-gamma0.3-lr1.0e-6-1minus-rerun results: [] --- # llama-3-8b-instruct-gapo-v2-bert-f1-beta10-gamma0.3-lr1.0e-6-1minus-rerun This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set: - Loss: 1.3036 - Rewards/chosen: -16.3155 - Rewards/rejected: -21.8422 - Rewards/accuracies: 0.8313 - Rewards/margins: 5.5267 - Logps/rejected: -2.1842 - Logps/chosen: -1.6315 - Logits/rejected: -1.4149 - Logits/chosen: -1.4050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.2352 | 0.8550 | 400 | 1.3036 | -16.3155 | -21.8422 | 0.8313 | 5.5267 | -2.1842 | -1.6315 | -1.4149 | -1.4050 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.0 - Datasets 2.21.0 - Tokenizers 0.19.1