--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: 'Whisper Small Chinese (Taiwan) ' results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 zh-TW type: mozilla-foundation/common_voice_11_0 config: zh-TW split: test args: zh-TW metrics: - type: wer value: 41.96519959058342 name: Wer --- # Whisper Small Chinese (Taiwan) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 zh-TW dataset. It achieves the following results on the evaluation set: - Loss: 0.2283 - Wer: 41.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0049 | 6.02 | 1000 | 0.2283 | 41.9652 | | 0.0008 | 13.02 | 2000 | 0.2556 | 42.0266 | | 0.0004 | 20.01 | 3000 | 0.2690 | 42.4156 | | 0.0003 | 27.0 | 4000 | 0.2788 | 42.7840 | | 0.0002 | 33.02 | 5000 | 0.2826 | 43.0297 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2