File size: 19,600 Bytes
8c00442 8d316a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### ANYTHING-MIDJOURNEY-V-4.1 Dreambooth model trained by Joeythemonster with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Sample pictures of this concept:
import subprocess, time, gc, os, sys
def setup_environment():
start_time = time.time()
print_subprocess = False
use_xformers_for_colab = True
try:
ipy = get_ipython()
except:
ipy = 'could not get_ipython'
if 'google.colab' in str(ipy):
print("..setting up environment")
all_process = [
['pip', 'install', 'torch==1.12.1+cu113', 'torchvision==0.13.1+cu113', '--extra-index-url', 'https://download.pytorch.org/whl/cu113'],
['pip', 'install', 'omegaconf==2.2.3', 'einops==0.4.1', 'pytorch-lightning==1.7.4', 'torchmetrics==0.9.3', 'torchtext==0.13.1', 'transformers==4.21.2', 'safetensors', 'kornia==0.6.7'],
['git', 'clone', 'https://github.com/deforum-art/deforum-stable-diffusion'],
['pip', 'install', 'accelerate', 'ftfy', 'jsonmerge', 'matplotlib', 'resize-right', 'timm', 'torchdiffeq','scikit-learn','torchsde','open-clip-torch'],
]
for process in all_process:
running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
if print_subprocess:
print(running)
with open('deforum-stable-diffusion/src/k_diffusion/__init__.py', 'w') as f:
f.write('')
sys.path.extend([
'deforum-stable-diffusion/',
'deforum-stable-diffusion/src',
])
if use_xformers_for_colab:
print("..installing xformers")
all_process = [['pip', 'install', 'triton==2.0.0.dev20220701']]
for process in all_process:
running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
if print_subprocess:
print(running)
v_card_name = subprocess.run(['nvidia-smi', '--query-gpu=name', '--format=csv,noheader'], stdout=subprocess.PIPE).stdout.decode('utf-8')
if 't4' in v_card_name.lower():
name_to_download = 'T4'
elif 'v100' in v_card_name.lower():
name_to_download = 'V100'
elif 'a100' in v_card_name.lower():
name_to_download = 'A100'
elif 'p100' in v_card_name.lower():
name_to_download = 'P100'
elif 'a4000' in v_card_name.lower():
name_to_download = 'Non-Colab/Paperspace/A4000'
elif 'p5000' in v_card_name.lower():
name_to_download = 'Non-Colab/Paperspace/P5000'
elif 'quadro m4000' in v_card_name.lower():
name_to_download = 'Non-Colab/Paperspace/Quadro M4000'
elif 'rtx 4000' in v_card_name.lower():
name_to_download = 'Non-Colab/Paperspace/RTX 4000'
elif 'rtx 5000' in v_card_name.lower():
name_to_download = 'Non-Colab/Paperspace/RTX 5000'
else:
print(v_card_name + ' is currently not supported with xformers flash attention in deforum!')
if 'Non-Colab' in name_to_download:
x_ver = 'xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl'
else:
x_ver = 'xformers-0.0.13.dev0-py3-none-any.whl'
x_link = 'https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/' + name_to_download + '/' + x_ver
all_process = [
['wget', '--no-verbose', '--no-clobber', x_link],
['pip', 'install', x_ver],
]
for process in all_process:
running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
if print_subprocess:
print(running)
else:
sys.path.extend([
'src'
])
end_time = time.time()
print(f"..environment set up in {end_time-start_time:.0f} seconds")
return
setup_environment()
import torch
import random
import clip
from IPython import display
from types import SimpleNamespace
from helpers.save_images import get_output_folder
from helpers.settings import load_args
from helpers.render import render_animation, render_input_video, render_image_batch, render_interpolation
from helpers.model_load import make_linear_decode, load_model, get_model_output_paths
from helpers.aesthetics import load_aesthetics_model
#@markdown **Path Setup**
def Root():
models_path = "models" #@param {type:"string"}
configs_path = "configs" #@param {type:"string"}
output_path = "output" #@param {type:"string"}
mount_google_drive = True #@param {type:"boolean"}
models_path_gdrive = "/content/drive/MyDrive/AI/models" #@param {type:"string"}
output_path_gdrive = "/content/drive/MyDrive/AI/StableDiffusion" #@param {type:"string"}
#@markdown **Model Setup**
model_config = "v1-inference.yaml" #@param ["custom","v2-inference.yaml","v1-inference.yaml"]
model_checkpoint = "v1-5-pruned-emaonly.ckpt" #@param ["custom","512-base-ema.ckpt","v1-5-pruned.ckpt","v1-5-pruned-emaonly.ckpt","sd-v1-4-full-ema.ckpt","sd-v1-4.ckpt","sd-v1-3-full-ema.ckpt","sd-v1-3.ckpt","sd-v1-2-full-ema.ckpt","sd-v1-2.ckpt","sd-v1-1-full-ema.ckpt","sd-v1-1.ckpt", "robo-diffusion-v1.ckpt","wd-v1-3-float16.ckpt"]
custom_config_path = "" #@param {type:"string"}
custom_checkpoint_path = "" #@param {type:"string"}
half_precision = True
return locals()
root = Root()
root = SimpleNamespace(**root)
root.models_path, root.output_path = get_model_output_paths(root)
root.model, root.device = load_model(root,
load_on_run_all=True
,
check_sha256=True
)
def DeforumAnimArgs():
#@markdown ####**Animation:**
animation_mode = 'Video Input' #@param ['None', '2D', '3D', 'Video Input', 'Interpolation'] {type:'string'}
max_frames = 400 #@param {type:"number"}
border = 'replicate' #@param ['wrap', 'replicate'] {type:'string'}
#@markdown ####**Motion Parameters:**
angle = "0:(0)"#@param {type:"string"}
zoom = "0:(1.04)"#@param {type:"string"}
translation_x = "0:(10*sin(2*3.14*t/10))"#@param {type:"string"}
translation_y = "0:(0)"#@param {type:"string"}
translation_z = "0:(10)"#@param {type:"string"}
rotation_3d_x = "0:(0)"#@param {type:"string"}
rotation_3d_y = "0:(0)"#@param {type:"string"}
rotation_3d_z = "0:(0)"#@param {type:"string"}
flip_2d_perspective = False #@param {type:"boolean"}
perspective_flip_theta = "0:(0)"#@param {type:"string"}
perspective_flip_phi = "0:(t%15)"#@param {type:"string"}
perspective_flip_gamma = "0:(0)"#@param {type:"string"}
perspective_flip_fv = "0:(53)"#@param {type:"string"}
noise_schedule = "0: (0.02)"#@param {type:"string"}
strength_schedule = "0: (0.65)"#@param {type:"string"}
contrast_schedule = "0: (1.0)"#@param {type:"string"}
#@markdown ####**Coherence:**
color_coherence = 'Match Frame 0 LAB' #@param ['None', 'Match Frame 0 HSV', 'Match Frame 0 LAB', 'Match Frame 0 RGB'] {type:'string'}
diffusion_cadence = '1' #@param ['1','2','3','4','5','6','7','8'] {type:'string'}
#@markdown ####**3D Depth Warping:**
use_depth_warping = True #@param {type:"boolean"}
midas_weight = 0.3#@param {type:"number"}
near_plane = 200
far_plane = 10000
fov = 40#@param {type:"number"}
padding_mode = 'border'#@param ['border', 'reflection', 'zeros'] {type:'string'}
sampling_mode = 'bicubic'#@param ['bicubic', 'bilinear', 'nearest'] {type:'string'}
save_depth_maps = True #@param {type:"boolean"}
#@markdown ####**Video Input:**
video_init_path ='/content/drive/MyDrive/mp4 for deforum/stan.mp4'#@param {type:"string"}
extract_nth_frame = 1#@param {type:"number"}
overwrite_extracted_frames = True #@param {type:"boolean"}
use_mask_video = False #@param {type:"boolean"}
video_mask_path ='/content/drive/MyDrive/mp4 for deforum/stan.mp4'#@param {type:"string"}
#@markdown ####**Interpolation:**
interpolate_key_frames = False #@param {type:"boolean"}
interpolate_x_frames = 4 #@param {type:"number"}
#@markdown ####**Resume Animation:**
resume_from_timestring = False #@param {type:"boolean"}
resume_timestring = "20220829210106" #@param {type:"string"}
return locals()
prompts = [
"a beautiful lake by Asher Brown Durand, trending on Artstation", # the first prompt I want
"a beautiful portrait of a woman by Artgerm, trending on Artstation", # the second prompt I want
#"this prompt I don't want it I commented it out",
#"a nousr robot, trending on Artstation", # use "nousr robot" with the robot diffusion model (see model_checkpoint setting)
#"touhou 1girl komeiji_koishi portrait, green hair", # waifu diffusion prompts can use danbooru tag groups (see model_checkpoint)
#"this prompt has weights if prompt weighting enabled:2 can also do negative:-2", # (see prompt_weighting)
]
animation_prompts = {
0: "a beautiful death, trending on Artstation",
100: "a beautiful rebirth, trending on Artstation",
200: "a beautiful rise to the top, trending on Artstation",
300: "a beautiful world, trending on Artstation",
}
#@markdown **Load Settings**
override_settings_with_file = False #@param {type:"boolean"}
settings_file = "custom" #@param ["custom", "512x512_aesthetic_0.json","512x512_aesthetic_1.json","512x512_colormatch_0.json","512x512_colormatch_1.json","512x512_colormatch_2.json","512x512_colormatch_3.json"]
custom_settings_file = "/content/drive/MyDrive/Settings.txt"#@param {type:"string"}
def DeforumArgs():
#@markdown **Image Settings**
W = 512 #@param
H = 512 #@param
W, H = map(lambda x: x - x % 64, (W, H)) # resize to integer multiple of 64
#@markdown **Sampling Settings**
seed = -1 #@param
sampler = 'euler_ancestral' #@param ["klms","dpm2","dpm2_ancestral","heun","euler","euler_ancestral","plms", "ddim", "dpm_fast", "dpm_adaptive", "dpmpp_2s_a", "dpmpp_2m"]
steps = 80 #@param
scale = 7 #@param
ddim_eta = 0.0 #@param
dynamic_threshold = None
static_threshold = None
#@markdown **Save & Display Settings**
save_samples = True #@param {type:"boolean"}
save_settings = True #@param {type:"boolean"}
display_samples = True #@param {type:"boolean"}
save_sample_per_step = False #@param {type:"boolean"}
show_sample_per_step = False #@param {type:"boolean"}
#@markdown **Prompt Settings**
prompt_weighting = True #@param {type:"boolean"}
normalize_prompt_weights = True #@param {type:"boolean"}
log_weighted_subprompts = False #@param {type:"boolean"}
#@markdown **Batch Settings**
n_batch = 1 #@param
batch_name = "STAN" #@param {type:"string"}
filename_format = "{timestring}_{index}_{prompt}.png" #@param ["{timestring}_{index}_{seed}.png","{timestring}_{index}_{prompt}.png"]
seed_behavior = "iter" #@param ["iter","fixed","random"]
make_grid = False #@param {type:"boolean"}
grid_rows = 2 #@param
outdir = get_output_folder(root.output_path, batch_name)
#@markdown **Init Settings**
use_init = False #@param {type:"boolean"}
strength = 0.0 #@param {type:"number"}
strength_0_no_init = True # Set the strength to 0 automatically when no init image is used
init_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}
# Whiter areas of the mask are areas that change more
use_mask = False #@param {type:"boolean"}
use_alpha_as_mask = False # use the alpha channel of the init image as the mask
mask_file = "https://www.filterforge.com/wiki/images/archive/b/b7/20080927223728%21Polygonal_gradient_thumb.jpg" #@param {type:"string"}
invert_mask = False #@param {type:"boolean"}
# Adjust mask image, 1.0 is no adjustment. Should be positive numbers.
mask_brightness_adjust = 1.0 #@param {type:"number"}
mask_contrast_adjust = 1.0 #@param {type:"number"}
# Overlay the masked image at the end of the generation so it does not get degraded by encoding and decoding
overlay_mask = True # {type:"boolean"}
# Blur edges of final overlay mask, if used. Minimum = 0 (no blur)
mask_overlay_blur = 5 # {type:"number"}
#@markdown **Exposure/Contrast Conditional Settings**
mean_scale = 0 #@param {type:"number"}
var_scale = 0 #@param {type:"number"}
exposure_scale = 0 #@param {type:"number"}
exposure_target = 0.5 #@param {type:"number"}
#@markdown **Color Match Conditional Settings**
colormatch_scale = 0 #@param {type:"number"}
colormatch_image = "https://www.saasdesign.io/wp-content/uploads/2021/02/palette-3-min-980x588.png" #@param {type:"string"}
colormatch_n_colors = 4 #@param {type:"number"}
ignore_sat_weight = 0 #@param {type:"number"}
#@markdown **CLIP\Aesthetics Conditional Settings**
clip_name = 'ViT-L/14' #@param ['ViT-L/14', 'ViT-L/14@336px', 'ViT-B/16', 'ViT-B/32']
clip_scale = 0 #@param {type:"number"}
aesthetics_scale = 0 #@param {type:"number"}
cutn = 1 #@param {type:"number"}
cut_pow = 0.0001 #@param {type:"number"}
#@markdown **Other Conditional Settings**
init_mse_scale = 0 #@param {type:"number"}
init_mse_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}
blue_scale = 0 #@param {type:"number"}
#@markdown **Conditional Gradient Settings**
gradient_wrt = 'x0_pred' #@param ["x", "x0_pred"]
gradient_add_to = 'both' #@param ["cond", "uncond", "both"]
decode_method = 'linear' #@param ["autoencoder","linear"]
grad_threshold_type = 'dynamic' #@param ["dynamic", "static", "mean", "schedule"]
clamp_grad_threshold = 0.2 #@param {type:"number"}
clamp_start = 0.2 #@param
clamp_stop = 0.01 #@param
grad_inject_timing = list(range(1,10)) #@param
#@markdown **Speed vs VRAM Settings**
cond_uncond_sync = True #@param {type:"boolean"}
n_samples = 1 # doesnt do anything
precision = 'autocast'
C = 4
f = 8
prompt = ""
timestring = ""
init_latent = None
init_sample = None
init_sample_raw = None
mask_sample = None
init_c = None
return locals()
args_dict = DeforumArgs()
anim_args_dict = DeforumAnimArgs()
if override_settings_with_file:
load_args(args_dict, anim_args_dict, settings_file, custom_settings_file, verbose=False)
args = SimpleNamespace(**args_dict)
anim_args = SimpleNamespace(**anim_args_dict)
args.timestring = time.strftime('%Y%m%d%H%M%S')
args.strength = max(0.0, min(1.0, args.strength))
# Load clip model if using clip guidance
if (args.clip_scale > 0) or (args.aesthetics_scale > 0):
root.clip_model = clip.load(args.clip_name, jit=False)[0].eval().requires_grad_(False).to(root.device)
if (args.aesthetics_scale > 0):
root.aesthetics_model = load_aesthetics_model(args, root)
if args.seed == -1:
args.seed = random.randint(0, 2**32 - 1)
if not args.use_init:
args.init_image = None
if args.sampler == 'plms' and (args.use_init or anim_args.animation_mode != 'None'):
print(f"Init images aren't supported with PLMS yet, switching to KLMS")
args.sampler = 'klms'
if args.sampler != 'ddim':
args.ddim_eta = 0
if anim_args.animation_mode == 'None':
anim_args.max_frames = 1
elif anim_args.animation_mode == 'Video Input':
args.use_init = True
# clean up unused memory
gc.collect()
torch.cuda.empty_cache()
# dispatch to appropriate renderer
if anim_args.animation_mode == '2D' or anim_args.animation_mode == '3D':
render_animation(args, anim_args, animation_prompts, root)
elif anim_args.animation_mode == 'Video Input':
render_input_video(args, anim_args, animation_prompts, root)
elif anim_args.animation_mode == 'Interpolation':
render_interpolation(args, anim_args, animation_prompts, root)
else:
render_image_batch(args, prompts, root)
skip_video_for_run_all = False #@param {type: 'boolean'}
fps = 12 #@param {type:"number"}
#@markdown **Manual Settings**
use_manual_settings = False #@param {type:"boolean"}
image_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939_%05d.png" #@param {type:"string"}
mp4_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939.mp4" #@param {type:"string"}
render_steps = False #@param {type: 'boolean'}
path_name_modifier = "x0_pred" #@param ["x0_pred","x"]
make_gif = False
if skip_video_for_run_all == True:
print('Skipping video creation, uncheck skip_video_for_run_all if you want to run it')
else:
import os
import subprocess
from base64 import b64encode
print(f"{image_path} -> {mp4_path}")
if use_manual_settings:
max_frames = "200" #@param {type:"string"}
else:
if render_steps: # render steps from a single image
fname = f"{path_name_modifier}_%05d.png"
all_step_dirs = [os.path.join(args.outdir, d) for d in os.listdir(args.outdir) if os.path.isdir(os.path.join(args.outdir,d))]
newest_dir = max(all_step_dirs, key=os.path.getmtime)
image_path = os.path.join(newest_dir, fname)
print(f"Reading images from {image_path}")
mp4_path = os.path.join(newest_dir, f"{args.timestring}_{path_name_modifier}.mp4")
max_frames = str(args.steps)
else: # render images for a video
image_path = os.path.join(args.outdir, f"{args.timestring}_%05d.png")
mp4_path = os.path.join(args.outdir, f"{args.timestring}.mp4")
max_frames = str(anim_args.max_frames)
# make video
cmd = [
'ffmpeg',
'-y',
'-vcodec', 'png',
'-r', str(fps),
'-start_number', str(0),
'-i', image_path,
'-frames:v', max_frames,
'-c:v', 'libx264',
'-vf',
f'fps={fps}',
'-pix_fmt', 'yuv420p',
'-crf', '17',
'-preset', 'veryfast',
'-pattern_type', 'sequence',
mp4_path
]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
if process.returncode != 0:
print(stderr)
raise RuntimeError(stderr)
mp4 = open(mp4_path,'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
display.display(display.HTML(f'<video controls loop><source src="{data_url}" type="video/mp4"></video>') )
if make_gif:
gif_path = os.path.splitext(mp4_path)[0]+'.gif'
cmd_gif = [
'ffmpeg',
'-y',
'-i', mp4_path,
'-r', str(fps),
gif_path
]
process_gif = subprocess.Popen(cmd_gif, stdout=subprocess.PIPE, stderr=subprocess.PIPE) |