Joeythemonster commited on
Commit
e47e2bf
·
1 Parent(s): 8d316a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -434
README.md CHANGED
@@ -13,437 +13,3 @@ Or you can run your new concept via `diffusers` [Colab Notebook for Inference](h
13
  Sample pictures of this concept:
14
 
15
 
16
- import subprocess, time, gc, os, sys
17
-
18
- def setup_environment():
19
- start_time = time.time()
20
- print_subprocess = False
21
- use_xformers_for_colab = True
22
- try:
23
- ipy = get_ipython()
24
- except:
25
- ipy = 'could not get_ipython'
26
- if 'google.colab' in str(ipy):
27
- print("..setting up environment")
28
-
29
- all_process = [
30
- ['pip', 'install', 'torch==1.12.1+cu113', 'torchvision==0.13.1+cu113', '--extra-index-url', 'https://download.pytorch.org/whl/cu113'],
31
- ['pip', 'install', 'omegaconf==2.2.3', 'einops==0.4.1', 'pytorch-lightning==1.7.4', 'torchmetrics==0.9.3', 'torchtext==0.13.1', 'transformers==4.21.2', 'safetensors', 'kornia==0.6.7'],
32
- ['git', 'clone', 'https://github.com/deforum-art/deforum-stable-diffusion'],
33
- ['pip', 'install', 'accelerate', 'ftfy', 'jsonmerge', 'matplotlib', 'resize-right', 'timm', 'torchdiffeq','scikit-learn','torchsde','open-clip-torch'],
34
- ]
35
- for process in all_process:
36
- running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
37
- if print_subprocess:
38
- print(running)
39
- with open('deforum-stable-diffusion/src/k_diffusion/__init__.py', 'w') as f:
40
- f.write('')
41
- sys.path.extend([
42
- 'deforum-stable-diffusion/',
43
- 'deforum-stable-diffusion/src',
44
- ])
45
- if use_xformers_for_colab:
46
-
47
- print("..installing xformers")
48
-
49
- all_process = [['pip', 'install', 'triton==2.0.0.dev20220701']]
50
- for process in all_process:
51
- running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
52
- if print_subprocess:
53
- print(running)
54
-
55
- v_card_name = subprocess.run(['nvidia-smi', '--query-gpu=name', '--format=csv,noheader'], stdout=subprocess.PIPE).stdout.decode('utf-8')
56
- if 't4' in v_card_name.lower():
57
- name_to_download = 'T4'
58
- elif 'v100' in v_card_name.lower():
59
- name_to_download = 'V100'
60
- elif 'a100' in v_card_name.lower():
61
- name_to_download = 'A100'
62
- elif 'p100' in v_card_name.lower():
63
- name_to_download = 'P100'
64
- elif 'a4000' in v_card_name.lower():
65
- name_to_download = 'Non-Colab/Paperspace/A4000'
66
- elif 'p5000' in v_card_name.lower():
67
- name_to_download = 'Non-Colab/Paperspace/P5000'
68
- elif 'quadro m4000' in v_card_name.lower():
69
- name_to_download = 'Non-Colab/Paperspace/Quadro M4000'
70
- elif 'rtx 4000' in v_card_name.lower():
71
- name_to_download = 'Non-Colab/Paperspace/RTX 4000'
72
- elif 'rtx 5000' in v_card_name.lower():
73
- name_to_download = 'Non-Colab/Paperspace/RTX 5000'
74
- else:
75
- print(v_card_name + ' is currently not supported with xformers flash attention in deforum!')
76
-
77
- if 'Non-Colab' in name_to_download:
78
- x_ver = 'xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl'
79
- else:
80
- x_ver = 'xformers-0.0.13.dev0-py3-none-any.whl'
81
-
82
- x_link = 'https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/' + name_to_download + '/' + x_ver
83
-
84
- all_process = [
85
- ['wget', '--no-verbose', '--no-clobber', x_link],
86
- ['pip', 'install', x_ver],
87
- ]
88
-
89
- for process in all_process:
90
- running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
91
- if print_subprocess:
92
- print(running)
93
- else:
94
- sys.path.extend([
95
- 'src'
96
- ])
97
- end_time = time.time()
98
- print(f"..environment set up in {end_time-start_time:.0f} seconds")
99
- return
100
-
101
- setup_environment()
102
-
103
- import torch
104
- import random
105
- import clip
106
- from IPython import display
107
- from types import SimpleNamespace
108
- from helpers.save_images import get_output_folder
109
- from helpers.settings import load_args
110
- from helpers.render import render_animation, render_input_video, render_image_batch, render_interpolation
111
- from helpers.model_load import make_linear_decode, load_model, get_model_output_paths
112
- from helpers.aesthetics import load_aesthetics_model
113
-
114
- #@markdown **Path Setup**
115
-
116
- def Root():
117
- models_path = "models" #@param {type:"string"}
118
- configs_path = "configs" #@param {type:"string"}
119
- output_path = "output" #@param {type:"string"}
120
- mount_google_drive = True #@param {type:"boolean"}
121
- models_path_gdrive = "/content/drive/MyDrive/AI/models" #@param {type:"string"}
122
- output_path_gdrive = "/content/drive/MyDrive/AI/StableDiffusion" #@param {type:"string"}
123
-
124
- #@markdown **Model Setup**
125
- model_config = "v1-inference.yaml" #@param ["custom","v2-inference.yaml","v1-inference.yaml"]
126
- model_checkpoint = "v1-5-pruned-emaonly.ckpt" #@param ["custom","512-base-ema.ckpt","v1-5-pruned.ckpt","v1-5-pruned-emaonly.ckpt","sd-v1-4-full-ema.ckpt","sd-v1-4.ckpt","sd-v1-3-full-ema.ckpt","sd-v1-3.ckpt","sd-v1-2-full-ema.ckpt","sd-v1-2.ckpt","sd-v1-1-full-ema.ckpt","sd-v1-1.ckpt", "robo-diffusion-v1.ckpt","wd-v1-3-float16.ckpt"]
127
- custom_config_path = "" #@param {type:"string"}
128
- custom_checkpoint_path = "" #@param {type:"string"}
129
- half_precision = True
130
- return locals()
131
-
132
- root = Root()
133
- root = SimpleNamespace(**root)
134
-
135
- root.models_path, root.output_path = get_model_output_paths(root)
136
- root.model, root.device = load_model(root,
137
- load_on_run_all=True
138
- ,
139
- check_sha256=True
140
- )
141
-
142
-
143
- def DeforumAnimArgs():
144
-
145
- #@markdown ####**Animation:**
146
- animation_mode = 'Video Input' #@param ['None', '2D', '3D', 'Video Input', 'Interpolation'] {type:'string'}
147
- max_frames = 400 #@param {type:"number"}
148
- border = 'replicate' #@param ['wrap', 'replicate'] {type:'string'}
149
-
150
- #@markdown ####**Motion Parameters:**
151
- angle = "0:(0)"#@param {type:"string"}
152
- zoom = "0:(1.04)"#@param {type:"string"}
153
- translation_x = "0:(10*sin(2*3.14*t/10))"#@param {type:"string"}
154
- translation_y = "0:(0)"#@param {type:"string"}
155
- translation_z = "0:(10)"#@param {type:"string"}
156
- rotation_3d_x = "0:(0)"#@param {type:"string"}
157
- rotation_3d_y = "0:(0)"#@param {type:"string"}
158
- rotation_3d_z = "0:(0)"#@param {type:"string"}
159
- flip_2d_perspective = False #@param {type:"boolean"}
160
- perspective_flip_theta = "0:(0)"#@param {type:"string"}
161
- perspective_flip_phi = "0:(t%15)"#@param {type:"string"}
162
- perspective_flip_gamma = "0:(0)"#@param {type:"string"}
163
- perspective_flip_fv = "0:(53)"#@param {type:"string"}
164
- noise_schedule = "0: (0.02)"#@param {type:"string"}
165
- strength_schedule = "0: (0.65)"#@param {type:"string"}
166
- contrast_schedule = "0: (1.0)"#@param {type:"string"}
167
-
168
- #@markdown ####**Coherence:**
169
- color_coherence = 'Match Frame 0 LAB' #@param ['None', 'Match Frame 0 HSV', 'Match Frame 0 LAB', 'Match Frame 0 RGB'] {type:'string'}
170
- diffusion_cadence = '1' #@param ['1','2','3','4','5','6','7','8'] {type:'string'}
171
-
172
- #@markdown ####**3D Depth Warping:**
173
- use_depth_warping = True #@param {type:"boolean"}
174
- midas_weight = 0.3#@param {type:"number"}
175
- near_plane = 200
176
- far_plane = 10000
177
- fov = 40#@param {type:"number"}
178
- padding_mode = 'border'#@param ['border', 'reflection', 'zeros'] {type:'string'}
179
- sampling_mode = 'bicubic'#@param ['bicubic', 'bilinear', 'nearest'] {type:'string'}
180
- save_depth_maps = True #@param {type:"boolean"}
181
-
182
- #@markdown ####**Video Input:**
183
- video_init_path ='/content/drive/MyDrive/mp4 for deforum/stan.mp4'#@param {type:"string"}
184
- extract_nth_frame = 1#@param {type:"number"}
185
- overwrite_extracted_frames = True #@param {type:"boolean"}
186
- use_mask_video = False #@param {type:"boolean"}
187
- video_mask_path ='/content/drive/MyDrive/mp4 for deforum/stan.mp4'#@param {type:"string"}
188
-
189
- #@markdown ####**Interpolation:**
190
- interpolate_key_frames = False #@param {type:"boolean"}
191
- interpolate_x_frames = 4 #@param {type:"number"}
192
-
193
- #@markdown ####**Resume Animation:**
194
- resume_from_timestring = False #@param {type:"boolean"}
195
- resume_timestring = "20220829210106" #@param {type:"string"}
196
-
197
- return locals()
198
-
199
- prompts = [
200
- "a beautiful lake by Asher Brown Durand, trending on Artstation", # the first prompt I want
201
- "a beautiful portrait of a woman by Artgerm, trending on Artstation", # the second prompt I want
202
- #"this prompt I don't want it I commented it out",
203
- #"a nousr robot, trending on Artstation", # use "nousr robot" with the robot diffusion model (see model_checkpoint setting)
204
- #"touhou 1girl komeiji_koishi portrait, green hair", # waifu diffusion prompts can use danbooru tag groups (see model_checkpoint)
205
- #"this prompt has weights if prompt weighting enabled:2 can also do negative:-2", # (see prompt_weighting)
206
- ]
207
-
208
- animation_prompts = {
209
- 0: "a beautiful death, trending on Artstation",
210
- 100: "a beautiful rebirth, trending on Artstation",
211
- 200: "a beautiful rise to the top, trending on Artstation",
212
- 300: "a beautiful world, trending on Artstation",
213
- }
214
-
215
-
216
- #@markdown **Load Settings**
217
- override_settings_with_file = False #@param {type:"boolean"}
218
- settings_file = "custom" #@param ["custom", "512x512_aesthetic_0.json","512x512_aesthetic_1.json","512x512_colormatch_0.json","512x512_colormatch_1.json","512x512_colormatch_2.json","512x512_colormatch_3.json"]
219
- custom_settings_file = "/content/drive/MyDrive/Settings.txt"#@param {type:"string"}
220
-
221
- def DeforumArgs():
222
- #@markdown **Image Settings**
223
- W = 512 #@param
224
- H = 512 #@param
225
- W, H = map(lambda x: x - x % 64, (W, H)) # resize to integer multiple of 64
226
-
227
- #@markdown **Sampling Settings**
228
- seed = -1 #@param
229
- sampler = 'euler_ancestral' #@param ["klms","dpm2","dpm2_ancestral","heun","euler","euler_ancestral","plms", "ddim", "dpm_fast", "dpm_adaptive", "dpmpp_2s_a", "dpmpp_2m"]
230
- steps = 80 #@param
231
- scale = 7 #@param
232
- ddim_eta = 0.0 #@param
233
- dynamic_threshold = None
234
- static_threshold = None
235
-
236
- #@markdown **Save & Display Settings**
237
- save_samples = True #@param {type:"boolean"}
238
- save_settings = True #@param {type:"boolean"}
239
- display_samples = True #@param {type:"boolean"}
240
- save_sample_per_step = False #@param {type:"boolean"}
241
- show_sample_per_step = False #@param {type:"boolean"}
242
-
243
- #@markdown **Prompt Settings**
244
- prompt_weighting = True #@param {type:"boolean"}
245
- normalize_prompt_weights = True #@param {type:"boolean"}
246
- log_weighted_subprompts = False #@param {type:"boolean"}
247
-
248
- #@markdown **Batch Settings**
249
- n_batch = 1 #@param
250
- batch_name = "STAN" #@param {type:"string"}
251
- filename_format = "{timestring}_{index}_{prompt}.png" #@param ["{timestring}_{index}_{seed}.png","{timestring}_{index}_{prompt}.png"]
252
- seed_behavior = "iter" #@param ["iter","fixed","random"]
253
- make_grid = False #@param {type:"boolean"}
254
- grid_rows = 2 #@param
255
- outdir = get_output_folder(root.output_path, batch_name)
256
-
257
- #@markdown **Init Settings**
258
- use_init = False #@param {type:"boolean"}
259
- strength = 0.0 #@param {type:"number"}
260
- strength_0_no_init = True # Set the strength to 0 automatically when no init image is used
261
- init_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}
262
- # Whiter areas of the mask are areas that change more
263
- use_mask = False #@param {type:"boolean"}
264
- use_alpha_as_mask = False # use the alpha channel of the init image as the mask
265
- mask_file = "https://www.filterforge.com/wiki/images/archive/b/b7/20080927223728%21Polygonal_gradient_thumb.jpg" #@param {type:"string"}
266
- invert_mask = False #@param {type:"boolean"}
267
- # Adjust mask image, 1.0 is no adjustment. Should be positive numbers.
268
- mask_brightness_adjust = 1.0 #@param {type:"number"}
269
- mask_contrast_adjust = 1.0 #@param {type:"number"}
270
- # Overlay the masked image at the end of the generation so it does not get degraded by encoding and decoding
271
- overlay_mask = True # {type:"boolean"}
272
- # Blur edges of final overlay mask, if used. Minimum = 0 (no blur)
273
- mask_overlay_blur = 5 # {type:"number"}
274
-
275
- #@markdown **Exposure/Contrast Conditional Settings**
276
- mean_scale = 0 #@param {type:"number"}
277
- var_scale = 0 #@param {type:"number"}
278
- exposure_scale = 0 #@param {type:"number"}
279
- exposure_target = 0.5 #@param {type:"number"}
280
-
281
- #@markdown **Color Match Conditional Settings**
282
- colormatch_scale = 0 #@param {type:"number"}
283
- colormatch_image = "https://www.saasdesign.io/wp-content/uploads/2021/02/palette-3-min-980x588.png" #@param {type:"string"}
284
- colormatch_n_colors = 4 #@param {type:"number"}
285
- ignore_sat_weight = 0 #@param {type:"number"}
286
-
287
- #@markdown **CLIP\Aesthetics Conditional Settings**
288
- clip_name = 'ViT-L/14' #@param ['ViT-L/14', 'ViT-L/14@336px', 'ViT-B/16', 'ViT-B/32']
289
- clip_scale = 0 #@param {type:"number"}
290
- aesthetics_scale = 0 #@param {type:"number"}
291
- cutn = 1 #@param {type:"number"}
292
- cut_pow = 0.0001 #@param {type:"number"}
293
-
294
- #@markdown **Other Conditional Settings**
295
- init_mse_scale = 0 #@param {type:"number"}
296
- init_mse_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}
297
-
298
- blue_scale = 0 #@param {type:"number"}
299
-
300
- #@markdown **Conditional Gradient Settings**
301
- gradient_wrt = 'x0_pred' #@param ["x", "x0_pred"]
302
- gradient_add_to = 'both' #@param ["cond", "uncond", "both"]
303
- decode_method = 'linear' #@param ["autoencoder","linear"]
304
- grad_threshold_type = 'dynamic' #@param ["dynamic", "static", "mean", "schedule"]
305
- clamp_grad_threshold = 0.2 #@param {type:"number"}
306
- clamp_start = 0.2 #@param
307
- clamp_stop = 0.01 #@param
308
- grad_inject_timing = list(range(1,10)) #@param
309
-
310
- #@markdown **Speed vs VRAM Settings**
311
- cond_uncond_sync = True #@param {type:"boolean"}
312
-
313
- n_samples = 1 # doesnt do anything
314
- precision = 'autocast'
315
- C = 4
316
- f = 8
317
-
318
- prompt = ""
319
- timestring = ""
320
- init_latent = None
321
- init_sample = None
322
- init_sample_raw = None
323
- mask_sample = None
324
- init_c = None
325
-
326
- return locals()
327
-
328
- args_dict = DeforumArgs()
329
- anim_args_dict = DeforumAnimArgs()
330
-
331
- if override_settings_with_file:
332
- load_args(args_dict, anim_args_dict, settings_file, custom_settings_file, verbose=False)
333
-
334
- args = SimpleNamespace(**args_dict)
335
- anim_args = SimpleNamespace(**anim_args_dict)
336
-
337
- args.timestring = time.strftime('%Y%m%d%H%M%S')
338
- args.strength = max(0.0, min(1.0, args.strength))
339
-
340
- # Load clip model if using clip guidance
341
- if (args.clip_scale > 0) or (args.aesthetics_scale > 0):
342
- root.clip_model = clip.load(args.clip_name, jit=False)[0].eval().requires_grad_(False).to(root.device)
343
- if (args.aesthetics_scale > 0):
344
- root.aesthetics_model = load_aesthetics_model(args, root)
345
-
346
- if args.seed == -1:
347
- args.seed = random.randint(0, 2**32 - 1)
348
- if not args.use_init:
349
- args.init_image = None
350
- if args.sampler == 'plms' and (args.use_init or anim_args.animation_mode != 'None'):
351
- print(f"Init images aren't supported with PLMS yet, switching to KLMS")
352
- args.sampler = 'klms'
353
- if args.sampler != 'ddim':
354
- args.ddim_eta = 0
355
-
356
- if anim_args.animation_mode == 'None':
357
- anim_args.max_frames = 1
358
- elif anim_args.animation_mode == 'Video Input':
359
- args.use_init = True
360
-
361
- # clean up unused memory
362
- gc.collect()
363
- torch.cuda.empty_cache()
364
-
365
- # dispatch to appropriate renderer
366
- if anim_args.animation_mode == '2D' or anim_args.animation_mode == '3D':
367
- render_animation(args, anim_args, animation_prompts, root)
368
- elif anim_args.animation_mode == 'Video Input':
369
- render_input_video(args, anim_args, animation_prompts, root)
370
- elif anim_args.animation_mode == 'Interpolation':
371
- render_interpolation(args, anim_args, animation_prompts, root)
372
- else:
373
- render_image_batch(args, prompts, root)
374
-
375
-
376
-
377
- skip_video_for_run_all = False #@param {type: 'boolean'}
378
- fps = 12 #@param {type:"number"}
379
- #@markdown **Manual Settings**
380
- use_manual_settings = False #@param {type:"boolean"}
381
- image_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939_%05d.png" #@param {type:"string"}
382
- mp4_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939.mp4" #@param {type:"string"}
383
- render_steps = False #@param {type: 'boolean'}
384
- path_name_modifier = "x0_pred" #@param ["x0_pred","x"]
385
- make_gif = False
386
-
387
- if skip_video_for_run_all == True:
388
- print('Skipping video creation, uncheck skip_video_for_run_all if you want to run it')
389
- else:
390
- import os
391
- import subprocess
392
- from base64 import b64encode
393
-
394
- print(f"{image_path} -> {mp4_path}")
395
-
396
- if use_manual_settings:
397
- max_frames = "200" #@param {type:"string"}
398
- else:
399
- if render_steps: # render steps from a single image
400
- fname = f"{path_name_modifier}_%05d.png"
401
- all_step_dirs = [os.path.join(args.outdir, d) for d in os.listdir(args.outdir) if os.path.isdir(os.path.join(args.outdir,d))]
402
- newest_dir = max(all_step_dirs, key=os.path.getmtime)
403
- image_path = os.path.join(newest_dir, fname)
404
- print(f"Reading images from {image_path}")
405
- mp4_path = os.path.join(newest_dir, f"{args.timestring}_{path_name_modifier}.mp4")
406
- max_frames = str(args.steps)
407
- else: # render images for a video
408
- image_path = os.path.join(args.outdir, f"{args.timestring}_%05d.png")
409
- mp4_path = os.path.join(args.outdir, f"{args.timestring}.mp4")
410
- max_frames = str(anim_args.max_frames)
411
-
412
- # make video
413
- cmd = [
414
- 'ffmpeg',
415
- '-y',
416
- '-vcodec', 'png',
417
- '-r', str(fps),
418
- '-start_number', str(0),
419
- '-i', image_path,
420
- '-frames:v', max_frames,
421
- '-c:v', 'libx264',
422
- '-vf',
423
- f'fps={fps}',
424
- '-pix_fmt', 'yuv420p',
425
- '-crf', '17',
426
- '-preset', 'veryfast',
427
- '-pattern_type', 'sequence',
428
- mp4_path
429
- ]
430
- process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
431
- stdout, stderr = process.communicate()
432
- if process.returncode != 0:
433
- print(stderr)
434
- raise RuntimeError(stderr)
435
-
436
- mp4 = open(mp4_path,'rb').read()
437
- data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
438
- display.display(display.HTML(f'<video controls loop><source src="{data_url}" type="video/mp4"></video>') )
439
-
440
- if make_gif:
441
- gif_path = os.path.splitext(mp4_path)[0]+'.gif'
442
- cmd_gif = [
443
- 'ffmpeg',
444
- '-y',
445
- '-i', mp4_path,
446
- '-r', str(fps),
447
- gif_path
448
- ]
449
- process_gif = subprocess.Popen(cmd_gif, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 
13
  Sample pictures of this concept:
14
 
15