update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: distilbert-base-uncased-finetuned-code-snippet-quality-scoring
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# distilbert-base-uncased-finetuned-code-snippet-quality-scoring
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4070
|
20 |
+
- Accuracy: 0.8568
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 4
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
51 |
+
| 0.5353 | 0.13 | 1000 | 0.5110 | 0.7574 |
|
52 |
+
| 0.4686 | 0.26 | 2000 | 0.4339 | 0.7859 |
|
53 |
+
| 0.4517 | 0.39 | 3000 | 0.4240 | 0.8002 |
|
54 |
+
| 0.4263 | 0.52 | 4000 | 0.3906 | 0.8169 |
|
55 |
+
| 0.4053 | 0.66 | 5000 | 0.3934 | 0.8191 |
|
56 |
+
| 0.3867 | 0.79 | 6000 | 0.3859 | 0.8253 |
|
57 |
+
| 0.3906 | 0.92 | 7000 | 0.3936 | 0.8335 |
|
58 |
+
| 0.3418 | 1.05 | 8000 | 0.3615 | 0.8380 |
|
59 |
+
| 0.3418 | 1.18 | 9000 | 0.3585 | 0.8400 |
|
60 |
+
| 0.3307 | 1.31 | 10000 | 0.3520 | 0.8432 |
|
61 |
+
| 0.3301 | 1.44 | 11000 | 0.3476 | 0.8475 |
|
62 |
+
| 0.3275 | 1.57 | 12000 | 0.3511 | 0.8497 |
|
63 |
+
| 0.3192 | 1.71 | 13000 | 0.3519 | 0.8540 |
|
64 |
+
| 0.3218 | 1.84 | 14000 | 0.3402 | 0.8495 |
|
65 |
+
| 0.3199 | 1.97 | 15000 | 0.3375 | 0.8580 |
|
66 |
+
| 0.2591 | 2.1 | 16000 | 0.3687 | 0.8568 |
|
67 |
+
| 0.2732 | 2.23 | 17000 | 0.3619 | 0.8521 |
|
68 |
+
| 0.2681 | 2.36 | 18000 | 0.3574 | 0.8563 |
|
69 |
+
| 0.2606 | 2.49 | 19000 | 0.3404 | 0.8581 |
|
70 |
+
| 0.2662 | 2.62 | 20000 | 0.3708 | 0.8566 |
|
71 |
+
| 0.2685 | 2.76 | 21000 | 0.3743 | 0.8591 |
|
72 |
+
| 0.246 | 2.89 | 22000 | 0.3786 | 0.8531 |
|
73 |
+
| 0.258 | 3.02 | 23000 | 0.3781 | 0.8578 |
|
74 |
+
| 0.2284 | 3.15 | 24000 | 0.3938 | 0.8583 |
|
75 |
+
| 0.2206 | 3.28 | 25000 | 0.4121 | 0.8583 |
|
76 |
+
| 0.2131 | 3.41 | 26000 | 0.4091 | 0.8575 |
|
77 |
+
| 0.2181 | 3.54 | 27000 | 0.4264 | 0.8535 |
|
78 |
+
| 0.2289 | 3.67 | 28000 | 0.3998 | 0.8568 |
|
79 |
+
| 0.2262 | 3.81 | 29000 | 0.3983 | 0.8580 |
|
80 |
+
| 0.2095 | 3.94 | 30000 | 0.4070 | 0.8568 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.21.2
|
86 |
+
- Pytorch 1.12.1+cu113
|
87 |
+
- Datasets 2.4.0
|
88 |
+
- Tokenizers 0.12.1
|