Johannes commited on
Commit
68a0ff0
1 Parent(s): d7519ba

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: distilbert-base-uncased-finetuned-code-snippet-quality-scoring
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # distilbert-base-uncased-finetuned-code-snippet-quality-scoring
16
+
17
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4070
20
+ - Accuracy: 0.8568
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 4
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
51
+ | 0.5353 | 0.13 | 1000 | 0.5110 | 0.7574 |
52
+ | 0.4686 | 0.26 | 2000 | 0.4339 | 0.7859 |
53
+ | 0.4517 | 0.39 | 3000 | 0.4240 | 0.8002 |
54
+ | 0.4263 | 0.52 | 4000 | 0.3906 | 0.8169 |
55
+ | 0.4053 | 0.66 | 5000 | 0.3934 | 0.8191 |
56
+ | 0.3867 | 0.79 | 6000 | 0.3859 | 0.8253 |
57
+ | 0.3906 | 0.92 | 7000 | 0.3936 | 0.8335 |
58
+ | 0.3418 | 1.05 | 8000 | 0.3615 | 0.8380 |
59
+ | 0.3418 | 1.18 | 9000 | 0.3585 | 0.8400 |
60
+ | 0.3307 | 1.31 | 10000 | 0.3520 | 0.8432 |
61
+ | 0.3301 | 1.44 | 11000 | 0.3476 | 0.8475 |
62
+ | 0.3275 | 1.57 | 12000 | 0.3511 | 0.8497 |
63
+ | 0.3192 | 1.71 | 13000 | 0.3519 | 0.8540 |
64
+ | 0.3218 | 1.84 | 14000 | 0.3402 | 0.8495 |
65
+ | 0.3199 | 1.97 | 15000 | 0.3375 | 0.8580 |
66
+ | 0.2591 | 2.1 | 16000 | 0.3687 | 0.8568 |
67
+ | 0.2732 | 2.23 | 17000 | 0.3619 | 0.8521 |
68
+ | 0.2681 | 2.36 | 18000 | 0.3574 | 0.8563 |
69
+ | 0.2606 | 2.49 | 19000 | 0.3404 | 0.8581 |
70
+ | 0.2662 | 2.62 | 20000 | 0.3708 | 0.8566 |
71
+ | 0.2685 | 2.76 | 21000 | 0.3743 | 0.8591 |
72
+ | 0.246 | 2.89 | 22000 | 0.3786 | 0.8531 |
73
+ | 0.258 | 3.02 | 23000 | 0.3781 | 0.8578 |
74
+ | 0.2284 | 3.15 | 24000 | 0.3938 | 0.8583 |
75
+ | 0.2206 | 3.28 | 25000 | 0.4121 | 0.8583 |
76
+ | 0.2131 | 3.41 | 26000 | 0.4091 | 0.8575 |
77
+ | 0.2181 | 3.54 | 27000 | 0.4264 | 0.8535 |
78
+ | 0.2289 | 3.67 | 28000 | 0.3998 | 0.8568 |
79
+ | 0.2262 | 3.81 | 29000 | 0.3983 | 0.8580 |
80
+ | 0.2095 | 3.94 | 30000 | 0.4070 | 0.8568 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.21.2
86
+ - Pytorch 1.12.1+cu113
87
+ - Datasets 2.4.0
88
+ - Tokenizers 0.12.1