Upload florence2_sd3_tagger8.py
Browse files- florence2_sd3_tagger8.py +120 -0
florence2_sd3_tagger8.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import logging
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
DEFAULT_FLORENCE2_SD3_CAP_REPO = 'John6666/gokaygokay-Florence-2-SD3-Captioner-8bit'
|
10 |
+
|
11 |
+
def fl_modify_caption(caption: str) -> str:
|
12 |
+
"""
|
13 |
+
Removes specific prefixes from captions if present, otherwise returns the original caption.
|
14 |
+
Args:
|
15 |
+
caption (str): A string containing a caption.
|
16 |
+
Returns:
|
17 |
+
str: The caption with the prefix removed if it was present, or the original caption.
|
18 |
+
"""
|
19 |
+
# Define the prefixes to remove
|
20 |
+
prefix_substrings = [
|
21 |
+
('captured from ', ''),
|
22 |
+
('captured at ', '')
|
23 |
+
]
|
24 |
+
|
25 |
+
# Create a regex pattern to match any of the prefixes
|
26 |
+
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
|
27 |
+
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings}
|
28 |
+
|
29 |
+
# Function to replace matched prefix with its corresponding replacement
|
30 |
+
def replace_fn(match):
|
31 |
+
return replacers[match.group(0).lower()]
|
32 |
+
|
33 |
+
# Apply the regex to the caption
|
34 |
+
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
|
35 |
+
|
36 |
+
# If the caption was modified, return the modified version; otherwise, return the original
|
37 |
+
return modified_caption if modified_caption != caption else caption
|
38 |
+
|
39 |
+
|
40 |
+
def fl_run_example(image, fl_model, fl_processor):
|
41 |
+
image = Image.open(image)
|
42 |
+
task_prompt = "<DESCRIPTION>"
|
43 |
+
prompt = task_prompt + "Describe this image in great detail."
|
44 |
+
|
45 |
+
# Ensure the image is in RGB mode
|
46 |
+
if image.mode != "RGB":
|
47 |
+
image = image.convert("RGB")
|
48 |
+
|
49 |
+
inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
50 |
+
generated_ids = fl_model.generate(
|
51 |
+
input_ids=inputs["input_ids"],
|
52 |
+
pixel_values=inputs["pixel_values"],
|
53 |
+
max_new_tokens=1024,
|
54 |
+
num_beams=3
|
55 |
+
)
|
56 |
+
generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
57 |
+
parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
58 |
+
return fl_modify_caption(parsed_answer["<DESCRIPTION>"])
|
59 |
+
|
60 |
+
|
61 |
+
def predict_tags_fl2_sd3(image, fl_model, fl_processor):
|
62 |
+
tag = fl_run_example(image, fl_model, fl_processor)
|
63 |
+
return tag
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# model location is model_dir + repo_id
|
68 |
+
# repo id may be like "user/repo" or "user/repo/branch", so we need to remove slash
|
69 |
+
model_location = os.path.join(args.model_dir, args.repo_id.replace("/", "_"))
|
70 |
+
|
71 |
+
if not os.path.exists(model_location) or args.force_download:
|
72 |
+
os.makedirs(args.model_dir, exist_ok=True)
|
73 |
+
logger.info(f"downloading Florence-2-SD3-Captioner model from hf_hub. id: {args.repo_id}")
|
74 |
+
from huggingface_hub import snapshot_download
|
75 |
+
snapshot_download(repo_id=args.repo_id, local_dir=model_location, local_dir_use_symlinks=False)
|
76 |
+
else:
|
77 |
+
logger.info("using existing Florence-2-SD3-Captioner model")
|
78 |
+
|
79 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
80 |
+
import torch
|
81 |
+
fl_model = AutoModelForCausalLM.from_pretrained(f"{model_location}", torch_dtype=torch.float32, low_cpu_mem_usage=True, trust_remote_code=True)
|
82 |
+
fl_processor = AutoProcessor.from_pretrained(f"{model_location}", trust_remote_code=True)
|
83 |
+
|
84 |
+
image_path = args.image_path
|
85 |
+
|
86 |
+
tag = predict_tags_fl2_sd3(image_path, fl_model, fl_processor)
|
87 |
+
|
88 |
+
print(tag)
|
89 |
+
|
90 |
+
|
91 |
+
def setup_parser() -> argparse.ArgumentParser:
|
92 |
+
parser = argparse.ArgumentParser()
|
93 |
+
parser.add_argument('image_path')
|
94 |
+
parser.add_argument(
|
95 |
+
"--repo_id",
|
96 |
+
type=str,
|
97 |
+
default=DEFAULT_FLORENCE2_SD3_CAP_REPO,
|
98 |
+
help="repo id for gokaygokay's Florence-2-SD3-Captioner on Hugging Face",
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--model_dir",
|
102 |
+
type=str,
|
103 |
+
default="Florence-2-SD3-Captioner_model",
|
104 |
+
help="directory to store Florence-2-SD3-Captioner model",
|
105 |
+
)
|
106 |
+
parser.add_argument(
|
107 |
+
"--force_download",
|
108 |
+
action="store_true",
|
109 |
+
help="force downloading Florence-2-SD3-Captioner model",
|
110 |
+
)
|
111 |
+
|
112 |
+
return parser
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = setup_parser()
|
117 |
+
|
118 |
+
args = parser.parse_args()
|
119 |
+
|
120 |
+
main(args)
|