Johnson28 commited on
Commit
5b7ab61
1 Parent(s): ea08ec0

pushing files to the repo from the examplej!

Browse files
Files changed (3) hide show
  1. README.md +227 -0
  2. config.json +209 -0
  3. examplej.skops +0 -0
README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_format: skops
9
+ model_file: examplej.skops
10
+ widget:
11
+ structuredData:
12
+ 'Unnamed: 32':
13
+ - .nan
14
+ - .nan
15
+ - .nan
16
+ area_mean:
17
+ - 481.9
18
+ - 1130.0
19
+ - 748.9
20
+ area_se:
21
+ - 30.29
22
+ - 96.05
23
+ - 48.31
24
+ area_worst:
25
+ - 677.9
26
+ - 1866.0
27
+ - 1156.0
28
+ compactness_mean:
29
+ - 0.1058
30
+ - 0.1029
31
+ - 0.1223
32
+ compactness_se:
33
+ - 0.01911
34
+ - 0.01652
35
+ - 0.01484
36
+ compactness_worst:
37
+ - 0.2378
38
+ - 0.2336
39
+ - 0.2394
40
+ concave points_mean:
41
+ - 0.03821
42
+ - 0.07951
43
+ - 0.08087
44
+ concave points_se:
45
+ - 0.01037
46
+ - 0.0137
47
+ - 0.01093
48
+ concave points_worst:
49
+ - 0.1015
50
+ - 0.1789
51
+ - 0.1514
52
+ concavity_mean:
53
+ - 0.08005
54
+ - 0.108
55
+ - 0.1466
56
+ concavity_se:
57
+ - 0.02701
58
+ - 0.02269
59
+ - 0.02813
60
+ concavity_worst:
61
+ - 0.2671
62
+ - 0.2687
63
+ - 0.3791
64
+ fractal_dimension_mean:
65
+ - 0.06373
66
+ - 0.05461
67
+ - 0.05796
68
+ fractal_dimension_se:
69
+ - 0.003586
70
+ - 0.001698
71
+ - 0.002461
72
+ fractal_dimension_worst:
73
+ - 0.0875
74
+ - 0.06589
75
+ - 0.08019
76
+ id:
77
+ - 87930
78
+ - 859575
79
+ - 8670
80
+ perimeter_mean:
81
+ - 81.09
82
+ - 123.6
83
+ - 101.7
84
+ perimeter_se:
85
+ - 2.497
86
+ - 5.486
87
+ - 3.094
88
+ perimeter_worst:
89
+ - 96.05
90
+ - 165.9
91
+ - 124.9
92
+ radius_mean:
93
+ - 12.47
94
+ - 18.94
95
+ - 15.46
96
+ radius_se:
97
+ - 0.3961
98
+ - 0.7888
99
+ - 0.4743
100
+ radius_worst:
101
+ - 14.97
102
+ - 24.86
103
+ - 19.26
104
+ smoothness_mean:
105
+ - 0.09965
106
+ - 0.09009
107
+ - 0.1092
108
+ smoothness_se:
109
+ - 0.006953
110
+ - 0.004444
111
+ - 0.00624
112
+ smoothness_worst:
113
+ - 0.1426
114
+ - 0.1193
115
+ - 0.1546
116
+ symmetry_mean:
117
+ - 0.1925
118
+ - 0.1582
119
+ - 0.1931
120
+ symmetry_se:
121
+ - 0.01782
122
+ - 0.01386
123
+ - 0.01397
124
+ symmetry_worst:
125
+ - 0.3014
126
+ - 0.2551
127
+ - 0.2837
128
+ texture_mean:
129
+ - 18.6
130
+ - 21.31
131
+ - 19.48
132
+ texture_se:
133
+ - 1.044
134
+ - 0.7975
135
+ - 0.7859
136
+ texture_worst:
137
+ - 24.64
138
+ - 26.58
139
+ - 26.0
140
+ ---
141
+
142
+ # Model description
143
+
144
+ [More Information Needed]
145
+
146
+ ## Intended uses & limitations
147
+
148
+ This model is not ready to be used in production (J).
149
+
150
+ ## Training Procedure
151
+
152
+ ### Hyperparameters
153
+
154
+ The model is trained with below hyperparameters.
155
+
156
+ <details>
157
+ <summary> Click to expand </summary>
158
+
159
+ | Hyperparameter | Value |
160
+ |------------------------------|-----------------------------------------------------------------------------------------------|
161
+ | memory | |
162
+ | steps | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] |
163
+ | verbose | False |
164
+ | imputer | SimpleImputer() |
165
+ | scaler | StandardScaler() |
166
+ | model | LogisticRegression() |
167
+ | imputer__add_indicator | False |
168
+ | imputer__copy | True |
169
+ | imputer__fill_value | |
170
+ | imputer__keep_empty_features | False |
171
+ | imputer__missing_values | nan |
172
+ | imputer__strategy | mean |
173
+ | imputer__verbose | deprecated |
174
+ | scaler__copy | True |
175
+ | scaler__with_mean | True |
176
+ | scaler__with_std | True |
177
+ | model__C | 1.0 |
178
+ | model__class_weight | |
179
+ | model__dual | False |
180
+ | model__fit_intercept | True |
181
+ | model__intercept_scaling | 1 |
182
+ | model__l1_ratio | |
183
+ | model__max_iter | 100 |
184
+ | model__multi_class | auto |
185
+ | model__n_jobs | |
186
+ | model__penalty | l2 |
187
+ | model__random_state | |
188
+ | model__solver | lbfgs |
189
+ | model__tol | 0.0001 |
190
+ | model__verbose | 0 |
191
+ | model__warm_start | False |
192
+
193
+ </details>
194
+
195
+ ### Model Plot
196
+
197
+ The model plot is below.
198
+
199
+ <style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),(&#x27;model&#x27;, LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-21" type="checkbox" ><label for="sk-estimator-id-21" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),(&#x27;model&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-22" type="checkbox" ><label for="sk-estimator-id-22" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-23" type="checkbox" ><label for="sk-estimator-id-23" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-24" type="checkbox" ><label for="sk-estimator-id-24" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
200
+
201
+ ## Evaluation Results
202
+
203
+ [More Information Needed]
204
+
205
+ # How to Get Started with the Model
206
+
207
+ [More Information Needed]
208
+
209
+ # Model Card Authors
210
+
211
+ This model card is written by following authors:
212
+
213
+ [More Information Needed]
214
+
215
+ # Model Card Contact
216
+
217
+ You can contact the model card authors through following channels:
218
+ [More Information Needed]
219
+
220
+ # Citation
221
+
222
+ Below you can find information related to citation.
223
+
224
+ **BibTeX:**
225
+ ```
226
+ [More Information Needed]
227
+ ```
config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "id",
5
+ "radius_mean",
6
+ "texture_mean",
7
+ "perimeter_mean",
8
+ "area_mean",
9
+ "smoothness_mean",
10
+ "compactness_mean",
11
+ "concavity_mean",
12
+ "concave points_mean",
13
+ "symmetry_mean",
14
+ "fractal_dimension_mean",
15
+ "radius_se",
16
+ "texture_se",
17
+ "perimeter_se",
18
+ "area_se",
19
+ "smoothness_se",
20
+ "compactness_se",
21
+ "concavity_se",
22
+ "concave points_se",
23
+ "symmetry_se",
24
+ "fractal_dimension_se",
25
+ "radius_worst",
26
+ "texture_worst",
27
+ "perimeter_worst",
28
+ "area_worst",
29
+ "smoothness_worst",
30
+ "compactness_worst",
31
+ "concavity_worst",
32
+ "concave points_worst",
33
+ "symmetry_worst",
34
+ "fractal_dimension_worst",
35
+ "Unnamed: 32"
36
+ ],
37
+ "environment": [
38
+ "scikit-learn=1.2.1"
39
+ ],
40
+ "example_input": {
41
+ "Unnamed: 32": [
42
+ NaN,
43
+ NaN,
44
+ NaN
45
+ ],
46
+ "area_mean": [
47
+ 481.9,
48
+ 1130.0,
49
+ 748.9
50
+ ],
51
+ "area_se": [
52
+ 30.29,
53
+ 96.05,
54
+ 48.31
55
+ ],
56
+ "area_worst": [
57
+ 677.9,
58
+ 1866.0,
59
+ 1156.0
60
+ ],
61
+ "compactness_mean": [
62
+ 0.1058,
63
+ 0.1029,
64
+ 0.1223
65
+ ],
66
+ "compactness_se": [
67
+ 0.01911,
68
+ 0.01652,
69
+ 0.01484
70
+ ],
71
+ "compactness_worst": [
72
+ 0.2378,
73
+ 0.2336,
74
+ 0.2394
75
+ ],
76
+ "concave points_mean": [
77
+ 0.03821,
78
+ 0.07951,
79
+ 0.08087
80
+ ],
81
+ "concave points_se": [
82
+ 0.01037,
83
+ 0.0137,
84
+ 0.01093
85
+ ],
86
+ "concave points_worst": [
87
+ 0.1015,
88
+ 0.1789,
89
+ 0.1514
90
+ ],
91
+ "concavity_mean": [
92
+ 0.08005,
93
+ 0.108,
94
+ 0.1466
95
+ ],
96
+ "concavity_se": [
97
+ 0.02701,
98
+ 0.02269,
99
+ 0.02813
100
+ ],
101
+ "concavity_worst": [
102
+ 0.2671,
103
+ 0.2687,
104
+ 0.3791
105
+ ],
106
+ "fractal_dimension_mean": [
107
+ 0.06373,
108
+ 0.05461,
109
+ 0.05796
110
+ ],
111
+ "fractal_dimension_se": [
112
+ 0.003586,
113
+ 0.001698,
114
+ 0.002461
115
+ ],
116
+ "fractal_dimension_worst": [
117
+ 0.0875,
118
+ 0.06589,
119
+ 0.08019
120
+ ],
121
+ "id": [
122
+ 87930,
123
+ 859575,
124
+ 8670
125
+ ],
126
+ "perimeter_mean": [
127
+ 81.09,
128
+ 123.6,
129
+ 101.7
130
+ ],
131
+ "perimeter_se": [
132
+ 2.497,
133
+ 5.486,
134
+ 3.094
135
+ ],
136
+ "perimeter_worst": [
137
+ 96.05,
138
+ 165.9,
139
+ 124.9
140
+ ],
141
+ "radius_mean": [
142
+ 12.47,
143
+ 18.94,
144
+ 15.46
145
+ ],
146
+ "radius_se": [
147
+ 0.3961,
148
+ 0.7888,
149
+ 0.4743
150
+ ],
151
+ "radius_worst": [
152
+ 14.97,
153
+ 24.86,
154
+ 19.26
155
+ ],
156
+ "smoothness_mean": [
157
+ 0.09965,
158
+ 0.09009,
159
+ 0.1092
160
+ ],
161
+ "smoothness_se": [
162
+ 0.006953,
163
+ 0.004444,
164
+ 0.00624
165
+ ],
166
+ "smoothness_worst": [
167
+ 0.1426,
168
+ 0.1193,
169
+ 0.1546
170
+ ],
171
+ "symmetry_mean": [
172
+ 0.1925,
173
+ 0.1582,
174
+ 0.1931
175
+ ],
176
+ "symmetry_se": [
177
+ 0.01782,
178
+ 0.01386,
179
+ 0.01397
180
+ ],
181
+ "symmetry_worst": [
182
+ 0.3014,
183
+ 0.2551,
184
+ 0.2837
185
+ ],
186
+ "texture_mean": [
187
+ 18.6,
188
+ 21.31,
189
+ 19.48
190
+ ],
191
+ "texture_se": [
192
+ 1.044,
193
+ 0.7975,
194
+ 0.7859
195
+ ],
196
+ "texture_worst": [
197
+ 24.64,
198
+ 26.58,
199
+ 26.0
200
+ ]
201
+ },
202
+ "model": {
203
+ "file": "examplej.skops"
204
+ },
205
+ "model_format": "skops",
206
+ "task": "tabular-classification",
207
+ "use_intelex": false
208
+ }
209
+ }
examplej.skops ADDED
Binary file (47.7 kB). View file