import torch import torch.nn as nn import torch.nn.functional as F import math from torch_geometric.nn import GCNConv class TransNAR(nn.Module): def __init__(self, input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim, dropout=0.1): super(TransNAR, self).__init__() # Camada de Embedding self.embedding = nn.Linear(input_dim, embed_dim) self.pos_encoding = PositionalEncoding(embed_dim, dropout) # Camadas Transformer self.transformer_layers = nn.ModuleList([ TransformerLayer(embed_dim, num_heads, ffn_dim, dropout) for _ in range(num_layers) ]) # Neural Algorithmic Reasoner (NAR) self.nar = NAR(embed_dim) # Cross-Attention Layer self.cross_attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) # Decodificador self.decoder = nn.Linear(embed_dim, output_dim) # Camada de normalização final self.final_norm = nn.LayerNorm(output_dim) def forward(self, x, edge_index, edge_attr): # Embedding e codificação posicional x = self.embedding(x) x = self.pos_encoding(x) # Camadas Transformer for layer in self.transformer_layers: x = layer(x) # Neural Algorithmic Reasoner nar_output = self.nar(x, edge_index, edge_attr) # Cross-Attention between Transformer and NAR outputs cross_attn_output, _ = self.cross_attention(x, nar_output, nar_output) # Decodificação output = self.decoder(cross_attn_output) # Normalização final output = self.final_norm(output) return output class TransformerLayer(nn.Module): def __init__(self, embed_dim, num_heads, ffn_dim, dropout=0.1): super(TransformerLayer, self).__init__() self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.ffn = nn.Sequential( nn.Linear(embed_dim, ffn_dim), nn.ReLU(), nn.Linear(ffn_dim, embed_dim) ) self.norm1 = nn.LayerNorm(embed_dim) self.norm2 = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # Atenção attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout(attn_output) x = self.norm1(x) # Feedforward ffn_output = self.ffn(x) x = x + self.dropout(ffn_output) x = self.norm2(x) return x class NAR(nn.Module): def __init__(self, embed_dim): super(NAR, self).__init__() self.gcn1 = GCNConv(embed_dim, embed_dim * 2) self.gcn2 = GCNConv(embed_dim * 2, embed_dim) self.gru = nn.GRU(embed_dim, embed_dim, batch_first=True) def forward(self, x, edge_index, edge_attr): x = F.relu(self.gcn1(x, edge_index)) x = self.gcn2(x, edge_index) output, _ = self.gru(x.unsqueeze(1)) return output.squeeze(1) class PositionalEncoding(nn.Module): def __init__(self, embed_dim, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Inicializa o tensor de codificação posicional pe = torch.zeros(max_len, embed_dim) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, embed_dim, 2).float() * (-math.log(10000.0) / embed_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :].to(x.device) return self.dropout(x) # Exemplo de uso input_dim = 100 output_dim = 50 embed_dim = 256 num_heads = 8 num_layers = 6 ffn_dim = 1024 model = TransNAR(input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim) input_data = torch.randn(32, 100, input_dim) edge_index = torch.tensor([[0, 1], [1, 0]]) # Example edge index edge_attr = torch.randn(edge_index.size(1)) # Example edge attributes output = model(input_data, edge_index, edge_attr) print(output.shape) # Deve imprimir torch.Size([32, 100, 50])